Suppr超能文献

核酸发夹稳定性的盐依赖性。

Salt dependence of nucleic acid hairpin stability.

作者信息

Tan Zhi-Jie, Chen Shi-Jie

机构信息

Department of Physics and Astronomy and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

Biophys J. 2008 Jul;95(2):738-52. doi: 10.1529/biophysj.108.131524. Epub 2008 Apr 18.

Abstract

Single-stranded junctions/loops are frequently occurring structural motifs in nucleic acid structures. Due to the polyanionic nature of the nucleic acid backbone, metal ions play a crucial role in the loop stability. Here we use the tightly bound ion theory, which can account for the possible ion correlation and ensemble (fluctuation) effects, to predict the ion-dependence of loop and stem-loop (hairpin) free energies. The predicted loop free energy is a function of the loop length, the loop end-to-end distance, and the ion (Na(+) and Mg(2+) in this study) concentrations. Based on the statistical mechanical calculations, we derive a set of empirical formulas for the loop thermodynamic parameters as functions of Na(+) and Mg(2+) concentrations. For three specific types of loops, namely, hairpin, bulge, and internal loops, the predicted free energies agree with the experimental data. Further applications of these empirical formulas to RNA and DNA hairpin stability lead to good agreements with the available experimental data. Our results indicate that the ion-dependent loop stability makes significant contribution to the overall ion-dependence of the hairpin stability.

摘要

单链连接/环是核酸结构中频繁出现的结构基序。由于核酸主链的聚阴离子性质,金属离子在环的稳定性中起着关键作用。在这里,我们使用紧密结合离子理论,该理论可以解释可能的离子相关性和系综(波动)效应,来预测环和茎环(发夹)自由能的离子依赖性。预测的环自由能是环长度、环端到端距离以及离子(本研究中的Na⁺和Mg²⁺)浓度的函数。基于统计力学计算,我们推导了一组作为Na⁺和Mg²⁺浓度函数的环热力学参数的经验公式。对于三种特定类型的环,即发夹环、凸起环和内部环,预测的自由能与实验数据相符。这些经验公式在RNA和DNA发夹稳定性方面的进一步应用与现有实验数据取得了良好的一致性。我们的结果表明,离子依赖性的环稳定性对发夹稳定性的整体离子依赖性有显著贡献。

相似文献

1
Salt dependence of nucleic acid hairpin stability.
Biophys J. 2008 Jul;95(2):738-52. doi: 10.1529/biophysj.108.131524. Epub 2008 Apr 18.
2
RNA helix stability in mixed Na+/Mg2+ solution.
Biophys J. 2007 May 15;92(10):3615-32. doi: 10.1529/biophysj.106.100388. Epub 2007 Feb 26.
3
Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
Biochemistry. 2006 Feb 7;45(5):1400-7. doi: 10.1021/bi051750u.
4
Studies of DNA dumbbells. VI. Analysis of optical melting curves of dumbbells with a sixteen-base pair duplex stem and end-loops of variable size and sequence.
Biopolymers. 1996 Dec;39(6):779-93. doi: 10.1002/(SICI)1097-0282(199612)39:6%3C779::AID-BIP5%3E3.0.CO;2-S.
5
Salt-dependent folding energy landscape of RNA three-way junction.
Biophys J. 2010 Jan 6;98(1):111-20. doi: 10.1016/j.bpj.2009.09.057.
6
Salt contribution to the flexibility of single-stranded nucleic acid offinite length.
Biopolymers. 2013 Jun;99(6):370-81. doi: 10.1002/bip.22189.
7
Atomistic Free Energy Model for Nucleic Acids: Simulations of Single-Stranded DNA and the Entropy Landscape of RNA Stem-Loop Structures.
J Phys Chem B. 2015 Nov 25;119(47):14840-56. doi: 10.1021/acs.jpcb.5b08077. Epub 2015 Nov 17.
8
Loop dependence of the stability and dynamics of nucleic acid hairpins.
Nucleic Acids Res. 2008 Mar;36(4):1098-112. doi: 10.1093/nar/gkm1083. Epub 2007 Dec 20.
9
Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
J Chem Phys. 2008 Mar 28;128(12):125107. doi: 10.1063/1.2895050.

引用本文的文献

1
Computational modeling of cotranscriptional RNA folding.
Comput Struct Biotechnol J. 2025 Jun 11;27:2638-2648. doi: 10.1016/j.csbj.2025.06.005. eCollection 2025.
2
Mono-valent salt corrections for RNA secondary structures in the ViennaRNA package.
Algorithms Mol Biol. 2023 Jul 29;18(1):8. doi: 10.1186/s13015-023-00236-0.
3
Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions.
Biophys J. 2023 Apr 18;122(8):1503-1516. doi: 10.1016/j.bpj.2023.03.017. Epub 2023 Mar 15.
5
Evaluation of weak interactions of proteins and organic cations with DNA duplex structures.
Biophys J. 2022 Aug 2;121(15):2873-2881. doi: 10.1016/j.bpj.2022.07.003. Epub 2022 Jul 5.
6
The effect of hairpin loop on the structure and gene expression activity of the long-loop G-quadruplex.
Nucleic Acids Res. 2021 Oct 11;49(18):10689-10706. doi: 10.1093/nar/gkab739.
7
Modeling Loop Composition and Ion Concentration Effects in RNA Hairpin Folding Stability.
Biophys J. 2020 Oct 6;119(7):1439-1455. doi: 10.1016/j.bpj.2020.07.042. Epub 2020 Sep 2.
8
Predicting Monovalent Ion Correlation Effects in Nucleic Acids.
ACS Omega. 2019 Aug 5;4(8):13435-13446. doi: 10.1021/acsomega.9b01689. eCollection 2019 Aug 20.
9
Predicting RNA-Metal Ion Binding with Ion Dehydration Effects.
Biophys J. 2019 Jan 22;116(2):184-195. doi: 10.1016/j.bpj.2018.12.006. Epub 2018 Dec 13.
10
Amino Acid Stabilization of Nucleic Acid Secondary Structure: Kinetic Insights from Single-Molecule Studies.
J Phys Chem B. 2018 Nov 1;122(43):9869-9876. doi: 10.1021/acs.jpcb.8b06872. Epub 2018 Oct 22.

本文引用的文献

1
RNA folding: conformational statistics, folding kinetics, and ion electrostatics.
Annu Rev Biophys. 2008;37:197-214. doi: 10.1146/annurev.biophys.37.032807.125957.
2
Electrostatic free energy landscapes for DNA helix bending.
Biophys J. 2008 Apr 15;94(8):3137-49. doi: 10.1529/biophysj.107.122366. Epub 2008 Jan 11.
3
Tertiary interactions determine the accuracy of RNA folding.
J Am Chem Soc. 2008 Jan 30;130(4):1296-303. doi: 10.1021/ja076166i. Epub 2008 Jan 8.
4
Simulation of the pressure and temperature folding/unfolding equilibrium of a small RNA hairpin.
J Am Chem Soc. 2008 Jan 23;130(3):815-7. doi: 10.1021/ja074191i. Epub 2007 Dec 23.
5
Loop dependence of the stability and dynamics of nucleic acid hairpins.
Nucleic Acids Res. 2008 Mar;36(4):1098-112. doi: 10.1093/nar/gkm1083. Epub 2007 Dec 20.
6
Measurement of the effect of monovalent cations on RNA hairpin stability.
J Am Chem Soc. 2007 Dec 5;129(48):14966-73. doi: 10.1021/ja074809o. Epub 2007 Nov 13.
8
Electrophoretic mobility is a reporter of hairpin structure in single-stranded DNA oligomers.
Biochemistry. 2007 Sep 25;46(38):10931-41. doi: 10.1021/bi701058f. Epub 2007 Sep 1.
9
Evaluating and learning from RNA pseudotorsional space: quantitative validation of a reduced representation for RNA structure.
J Mol Biol. 2007 Sep 28;372(4):942-957. doi: 10.1016/j.jmb.2007.06.058. Epub 2007 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验