Suppr超能文献

连接蛋白43-绿色荧光蛋白嵌合体在活的哺乳动物细胞中的运输、组装及功能

Trafficking, assembly, and function of a connexin43-green fluorescent protein chimera in live mammalian cells.

作者信息

Jordan K, Solan J L, Dominguez M, Sia M, Hand A, Lampe P D, Laird D W

机构信息

Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 5C1.

出版信息

Mol Biol Cell. 1999 Jun;10(6):2033-50. doi: 10.1091/mbc.10.6.2033.

Abstract

To examine the trafficking, assembly, and turnover of connexin43 (Cx43) in living cells, we used an enhanced red-shifted mutant of green fluorescent protein (GFP) to construct a Cx43-GFP chimera. When cDNA encoding Cx43-GFP was transfected into communication-competent normal rat kidney cells, Cx43-negative Madin-Darby canine kidney (MDCK) cells, or communication-deficient Neuro2A or HeLa cells, the fusion protein of predicted length was expressed, transported, and assembled into gap junctions that exhibited the classical pentalaminar profile. Dye transfer studies showed that Cx43-GFP formed functional gap junction channels when transfected into otherwise communication-deficient HeLa or Neuro2A cells. Live imaging of Cx43-GFP in MDCK cells revealed that many gap junction plaques remained relatively immobile, whereas others coalesced laterally within the plasma membrane. Time-lapse imaging of live MDCK cells also revealed that Cx43-GFP was transported via highly mobile transport intermediates that could be divided into two size classes of <0.5 microm and 0.5-1.5 microm. In some cases, the larger intracellular Cx43-GFP transport intermediates were observed to form from the internalization of gap junctions, whereas the smaller transport intermediates may represent other routes of trafficking to or from the plasma membrane. The localization of Cx43-GFP in two transport compartments suggests that the dynamic formation and turnover of connexins may involve at least two distinct pathways.

摘要

为了研究连接蛋白43(Cx43)在活细胞中的运输、组装和周转,我们使用了绿色荧光蛋白(GFP)的增强型红移突变体构建了Cx43-GFP嵌合体。当将编码Cx43-GFP的cDNA转染到具有通讯能力的正常大鼠肾细胞、Cx43阴性的Madin-Darby犬肾(MDCK)细胞、或通讯缺陷的Neuro2A或HeLa细胞中时,预测长度的融合蛋白得以表达、运输并组装成具有经典五片层结构的间隙连接。染料转移研究表明,当转染到原本通讯缺陷的HeLa或Neuro2A细胞中时,Cx43-GFP形成了功能性间隙连接通道。对MDCK细胞中Cx43-GFP的实时成像显示,许多间隙连接斑块相对固定,而其他斑块则在质膜内横向融合。对活的MDCK细胞进行延时成像还显示,Cx43-GFP通过高度移动的运输中间体进行运输,这些中间体可分为小于0.5微米和0.5 - 1.5微米的两个大小类别。在某些情况下,观察到较大的细胞内Cx43-GFP运输中间体是由间隙连接的内化形成的,而较小的运输中间体可能代表了进出质膜的其他运输途径。Cx43-GFP在两个运输区室中的定位表明,连接蛋白的动态形成和周转可能涉及至少两条不同的途径。

相似文献

2
Comparative analysis and application of fluorescent protein-tagged connexins.
Microsc Res Tech. 2001 Feb 1;52(3):263-72. doi: 10.1002/1097-0029(20010201)52:3<263::AID-JEMT1012>3.0.CO;2-Q.
3
Mechanisms of Cx43 and Cx26 transport to the plasma membrane and gap junction regeneration.
J Cell Sci. 2005 Oct 1;118(Pt 19):4451-62. doi: 10.1242/jcs.02569. Epub 2005 Sep 13.
4
Role of cytoskeletal elements in the recruitment of Cx43-GFP and Cx26-YFP into gap junctions.
Cell Commun Adhes. 2001;8(4-6):231-6. doi: 10.3109/15419060109080729.
5
Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells.
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10446-51. doi: 10.1073/pnas.162055899. Epub 2002 Jul 29.
7
Fusion of GFP to the carboxyl terminus of connexin43 increases gap junction size in HeLa cells.
Cell Commun Adhes. 2003 Jul-Dec;10(4-6):211-4. doi: 10.1080/cac.10.4-6.211.214.
8
The origin of annular junctions: a mechanism of gap junction internalization.
J Cell Sci. 2001 Feb;114(Pt 4):763-73. doi: 10.1242/jcs.114.4.763.
9
Gap junction assembly: multiple connexin fluorophores identify complex trafficking pathways.
Cell Commun Adhes. 2001;8(4-6):243-8. doi: 10.3109/15419060109080731.
10
Trafficking pathways of Cx49-GFP in living mammalian cells.
Biol Chem. 2005 Feb;386(2):155-60. doi: 10.1515/BC.2005.019.

引用本文的文献

2
A truncated isoform of Connexin43 caps actin to organize forward delivery of full-length Connexin43.
J Cell Biol. 2025 Mar 3;224(3). doi: 10.1083/jcb.202402112. Epub 2024 Dec 31.
3
Characterizing ER Retention Defects of PDZ Binding Deficient Cx36 Mutants Using Confocal Microscopy.
Bio Protoc. 2024 Jul 20;14(14):e5034. doi: 10.21769/BioProtoc.5034.
6
Spatial and Temporal Localization of Connexins in Cells Using Confocal Microscopy.
Methods Mol Biol. 2024;2801:57-74. doi: 10.1007/978-1-0716-3842-2_5.
7
Cytomembrane Trafficking Pathways of Connexin 26, 30, and 43.
Int J Mol Sci. 2023 Jun 19;24(12):10349. doi: 10.3390/ijms241210349.
9
Analysis of localized cAMP perturbations within a tissue reveal the effects of a local, dynamic gap junction state on ERK signaling.
PLoS Comput Biol. 2022 Mar 30;18(3):e1009873. doi: 10.1371/journal.pcbi.1009873. eCollection 2022 Mar.
10
Src Regulation of Cx43 Phosphorylation and Gap Junction Turnover.
Biomolecules. 2020 Nov 24;10(12):1596. doi: 10.3390/biom10121596.

本文引用的文献

2
Neuronal peptide release is limited by secretory granule mobility.
Neuron. 1997 Nov;19(5):1095-102. doi: 10.1016/s0896-6273(00)80400-6.
4
ER-to-Golgi transport visualized in living cells.
Nature. 1997 Sep 4;389(6646):81-5. doi: 10.1038/38001.
6
Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network.
J Cell Biol. 1997 Aug 11;138(3):495-504. doi: 10.1083/jcb.138.3.495.
9
Connexin 26 mutations in hereditary non-syndromic sensorineural deafness.
Nature. 1997 May 1;387(6628):80-3. doi: 10.1038/387080a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验