Ehrengruber M U, Lundstrom K, Schweitzer C, Heuss C, Schlesinger S, Gähwiler B H
Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7041-6. doi: 10.1073/pnas.96.12.7041.
Gene transfer into nervous tissue is a powerful tool for the analysis of gene function. By using a rat hippocampal slice culture preparation, we show here that Semliki Forest virus (SFV) and Sindbis virus (SIN) vectors are useful for the effective infection of neurons. The stratum pyramidale and/or the granular cell layer were injected with recombinant virus encoding beta-galactosidase (LacZ) or green fluorescent protein (GFP). By using low concentrations of injected SFV-LacZ or SIN-LacZ, we detected LacZ staining of pyramidal cells, interneurons, and granule cells. About 60% of the infected cells showed clear neuronal morphology; thus, relatively few glial cells expressed the transgene. Expression of GFP from SFV and SIN vectors gave similar results, with an even higher percentage (>90%) of the GFP-positive cells identified as neurons. Infected pyramidal cells were readily recognized in living slices, displaying GFP fluorescence in dendrites of up to fourth order and in dendritic spines. They appeared morphologically normal and viable at 1-5 days postinfection. We conclude that both SFV and SIN vectors efficiently transfer genes into neurons in hippocampal slice cultures. In combination with the GFP reporter, SFV and SIN vectors will allow the physiological examination of identified neurons that have been modified by overexpression or suppression of a specific gene product.
基因导入神经组织是分析基因功能的有力工具。通过使用大鼠海马切片培养制剂,我们在此表明辛德毕斯病毒(SFV)和Semliki森林病毒(SIN)载体可有效感染神经元。将编码β-半乳糖苷酶(LacZ)或绿色荧光蛋白(GFP)的重组病毒注射到锥体细胞层和/或颗粒细胞层。通过使用低浓度注射的SFV-LacZ或SIN-LacZ,我们检测到锥体细胞、中间神经元和颗粒细胞的LacZ染色。约60%的感染细胞呈现清晰的神经元形态;因此,相对较少的胶质细胞表达转基因。来自SFV和SIN载体的GFP表达给出了类似的结果,超过90%的GFP阳性细胞被鉴定为神经元。在活切片中很容易识别出被感染的锥体细胞,其在高达四级的树突和树突棘中显示GFP荧光。它们在感染后1-5天形态正常且存活。我们得出结论,SFV和SIN载体都能有效地将基因导入海马切片培养中的神经元。与GFP报告基因相结合,SFV和SIN载体将允许对通过过表达或抑制特定基因产物而被修饰的已鉴定神经元进行生理学检查。