Suppr超能文献

一种基于对SwissProt数据库的统计分析来预测蛋白质跨膜片段的新方法:PRED-TMR算法。

A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm.

作者信息

Pasquier C, Promponas V J, Palaios G A, Hamodrakas J S, Hamodrakas S J

机构信息

Faculty of Biology, Department of Cell Biology and Biophysics, University of Athens, Panepistimiopolis, Athens 15701, Greece.

出版信息

Protein Eng. 1999 May;12(5):381-5. doi: 10.1093/protein/12.5.381.

Abstract

We present a novel method that predicts transmembrane domains in proteins using solely information contained in the sequence itself. The PRED-TMR algorithm described, refines a standard hydrophobicity analysis with a detection of potential termini ('edges', starts and ends) of transmembrane regions. This allows one both to discard highly hydrophobic regions not delimited by clear start and end configurations and to confirm putative transmembrane segments not distinguishable by their hydrophobic composition. The accuracy obtained on a test set of 101 non-homologous transmembrane proteins with reliable topologies compares well with that of other popular existing methods. Only a slight decrease in prediction accuracy was observed when the algorithm was applied to all transmembrane proteins of the SwissProt database (release 35). A WWW server running the PRED-TMR algorithm is available at http://o2.db.uoa. gr/PRED-TMR/

摘要

我们提出了一种全新的方法,该方法仅利用蛋白质序列本身所包含的信息来预测蛋白质中的跨膜结构域。所描述的PRED-TMR算法,通过检测跨膜区域的潜在末端(“边缘”,起始端和末端)来完善标准的疏水性分析。这使得人们既能舍弃那些没有明确起始和终止结构界定的高度疏水区域,又能确认那些因其疏水组成难以区分的假定跨膜片段。在一组具有可靠拓扑结构的101个非同源跨膜蛋白测试集上获得的准确率,与其他现有的流行方法相比具有优势。当该算法应用于SwissProt数据库(版本35)中的所有跨膜蛋白时,仅观察到预测准确率略有下降。运行PRED-TMR算法的万维网服务器可在http://o2.db.uoa. gr/PRED-TMR/获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验