Suppr超能文献

利用进化信息提高跨膜蛋白拓扑结构预测的准确性。

Improving the accuracy of transmembrane protein topology prediction using evolutionary information.

作者信息

Jones David T

机构信息

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom.

出版信息

Bioinformatics. 2007 Mar 1;23(5):538-44. doi: 10.1093/bioinformatics/btl677. Epub 2007 Jan 19.

Abstract

MOTIVATION

Many important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion are mediated by membrane proteins. Unfortunately, as these proteins are not water soluble, it is extremely hard to experimentally determine their structure. Therefore, improved methods for predicting the structure of these proteins are vital in biological research. In order to improve transmembrane topology prediction, we evaluate the combined use of both integrated signal peptide prediction and evolutionary information in a single algorithm.

RESULTS

A new method (MEMSAT3) for predicting transmembrane protein topology from sequence profiles is described and benchmarked with full cross-validation on a standard data set of 184 transmembrane proteins. The method is found to predict both the correct topology and the locations of transmembrane segments for 80% of the test set. This compares with accuracies of 62-72% for other popular methods on the same benchmark. By using a second neural network specifically to discriminate transmembrane from globular proteins, a very low overall false positive rate (0.5%) can also be achieved in detecting transmembrane proteins.

AVAILABILITY

An implementation of the described method is available both as a web server (http://www.psipred.net) and as downloadable source code from http://bioinf.cs.ucl.ac.uk/memsat. Both the server and source code files are free to non-commercial users. Benchmark and training data are also available from http://bioinf.cs.ucl.ac.uk/memsat.

摘要

动机

许多重要的生物学过程,如细胞信号传导、膜不透性分子的运输、细胞间通讯、细胞识别和细胞粘附,都是由膜蛋白介导的。不幸的是,由于这些蛋白质不溶于水,通过实验确定其结构极其困难。因此,改进这些蛋白质结构预测的方法在生物学研究中至关重要。为了改进跨膜拓扑结构预测,我们在单一算法中评估了综合信号肽预测和进化信息的联合使用。

结果

描述了一种从序列谱预测跨膜蛋白拓扑结构的新方法(MEMSAT3),并在184个跨膜蛋白的标准数据集上进行了全交叉验证基准测试。该方法被发现能够为80%的测试集预测正确的拓扑结构和跨膜片段的位置。相比之下,其他流行方法在同一基准测试中的准确率为62 - 72%。通过使用第二个神经网络专门区分跨膜蛋白和球状蛋白,在检测跨膜蛋白时也能实现非常低的总体假阳性率(0.5%)。

可用性

所描述方法的实现既可以作为网络服务器(http://www.psipred.net)使用,也可以从http://bioinf.cs.ucl.ac.uk/memsat下载源代码。服务器和源代码文件对非商业用户免费。基准测试和训练数据也可从http://bioinf.cs.ucl.ac.uk/memsat获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验