Suppr超能文献

豌豆幼苗中的抗坏血酸代谢。D-葡糖酮、L-山梨糖酮和L-半乳糖-1,4-内酯作为抗坏血酸前体的比较。

Ascorbic acid metabolism in pea seedlings. A comparison of D-glucosone, L-sorbosone, and L-galactono-1,4-lactone as ascorbate precursors.

作者信息

Pallanca JE, Smirnoff N

机构信息

School of Biological Sciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, United Kingdom.

出版信息

Plant Physiol. 1999 Jun;120(2):453-62. doi: 10.1104/pp.120.2.453.

Abstract

L-Ascorbic acid (AsA) accumulates in pea (Pisum sativum L.) seedlings during germination, with the most rapid phase of accumulation coinciding with radicle emergence. Monodehydroascorbate reductase and dehydroascorbic acid reductase were active in the embryonic axes before AsA accumulation started, whereas AsA oxidase and AsA peroxidase activities increased in parallel with AsA. Excised embryonic axes were used to investigate the osone pathway of AsA biosynthesis, in which D-glucosone and L-sorbosone are the proposed intermediates. [U-14C]Glucosone was incorporated into AsA and inhibited the incorporation of [U-14C]glucose (Glc) into AsA. A higher D-glucosone concentration (5 mM) inhibited AsA accumulation. L-Sorbosone did not affect AsA pool size but caused a small inhibition in the incorporation of [U-14C]Glc into AsA. Oxidase and dehydrogenase activities capable of converting Glc or Glc-6-phosphate to glucosone were not detected in embryonic axis extracts. The osones are therefore unlikely to be physiological intermediates of AsA biosynthesis. L-Galactono-1,4-lactone, recently proposed as the AsA precursor (G.L. Wheeler, M.A. Jones, N. Smirnoff [1998] Nature 393: 365-369), was readily converted to AsA by pea embryonic axes. Although L-galactono-1,4-lactone did not inhibit [14C]Glc incorporation into AsA, this does not mean that it is not a precursor, because competition between endogenous and exogenous pools was minimized by its very small pool size and rapid metabolism.

摘要

L-抗坏血酸(AsA)在豌豆(Pisum sativum L.)种子萌发过程中在幼苗中积累,积累最迅速的阶段与胚根出现同时发生。单脱氢抗坏血酸还原酶和脱氢抗坏血酸还原酶在AsA积累开始前在胚轴中就有活性,而AsA氧化酶和AsA过氧化物酶活性与AsA平行增加。切除的胚轴被用于研究AsA生物合成的酮糖途径,其中D-葡糖酮和L-山梨糖酮被认为是中间产物。[U-14C]葡糖酮被掺入AsA并抑制[U-14C]葡萄糖(Glc)掺入AsA。较高的D-葡糖酮浓度(5 mM)抑制AsA积累。L-山梨糖酮不影响AsA库大小,但对[U-14C]Glc掺入AsA有轻微抑制作用。在胚轴提取物中未检测到能够将Glc或Glc-6-磷酸转化为葡糖酮的氧化酶和脱氢酶活性。因此,酮糖不太可能是AsA生物合成的生理中间产物。L-半乳糖-1,4-内酯最近被提出是AsA的前体(G.L. Wheeler,M.A. Jones,N. Smirnoff [1998] Nature 393: 365-369),豌豆胚轴能将其迅速转化为AsA。虽然L-半乳糖-1,4-内酯不抑制[14C]Glc掺入AsA,但这并不意味着它不是前体,因为其库大小非常小且代谢迅速,使内源性和外源性库之间的竞争最小化。

相似文献

2
L-ascorbic acid metabolism in the ascorbate-deficient arabidopsis mutant vtc1.
Plant Physiol. 1997 Nov;115(3):1277-85. doi: 10.1104/pp.115.3.1277.
3
Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars.
Plant Physiol Biochem. 2013 Dec;73:229-36. doi: 10.1016/j.plaphy.2013.10.005. Epub 2013 Oct 10.
5
Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance.
Plant Physiol Biochem. 2005 Oct-Nov;43(10-11):955-62. doi: 10.1016/j.plaphy.2005.08.007. Epub 2005 Sep 29.
7
Synthesis of L-ascorbic acid in the phloem.
BMC Plant Biol. 2003 Nov 24;3:7. doi: 10.1186/1471-2229-3-7.
8
High levels of expression of multiple enzymes in the Smirnoff-Wheeler pathway are important for high accumulation of ascorbic acid in acerola fruits.
Biosci Biotechnol Biochem. 2019 Sep;83(9):1713-1716. doi: 10.1080/09168451.2019.1608808. Epub 2019 Apr 25.
9
L-Ascorbate Biosynthesis Involves Carbon Skeleton Rearrangement in the Nematode .
Metabolites. 2020 Aug 17;10(8):334. doi: 10.3390/metabo10080334.
10
Regulation effects of hydrogen sulfide on ascorbate-glutathione cycle in naked oat leaves under saline-alkali stress.
Ying Yong Sheng Tai Xue Bao. 2021 Nov 15;32(11):3988-3996. doi: 10.13287/j.1001-9332.202111.023.

引用本文的文献

1
Insights into the Red Seaweed Using an Integrative Multi-Omics Analysis.
Plants (Basel). 2025 May 19;14(10):1523. doi: 10.3390/plants14101523.
2
The Functions of Chloroplastic Ascorbate in Vascular Plants and Algae.
Int J Mol Sci. 2023 Jan 28;24(3):2537. doi: 10.3390/ijms24032537.
3
Effects of exogenous ascorbic acid on seed germination and seedling salt-tolerance of alfalfa.
PLoS One. 2021 Apr 29;16(4):e0250926. doi: 10.1371/journal.pone.0250926. eCollection 2021.
5
Obesity leads to distinct metabolomic signatures in follicular fluid of women undergoing in vitro fertilization.
Am J Physiol Endocrinol Metab. 2019 Mar 1;316(3):E383-E396. doi: 10.1152/ajpendo.00401.2018. Epub 2019 Jan 2.
6
Characterization of Two L-Gulono-1,4-lactone Oxidases, AtGulLO3 and AtGulLO5, Involved in Ascorbate Biosynthesis.
React Oxyg Species (Apex). 2017 Nov;4(12):389-417. doi: 10.20455/ros.2017.861.
7
Ascorbic acid metabolism and functions: A comparison of plants and mammals.
Free Radic Biol Med. 2018 Jul;122:116-129. doi: 10.1016/j.freeradbiomed.2018.03.033. Epub 2018 Mar 20.
9
Regulation of L-ascorbic acid content in strawberry fruits.
J Exp Bot. 2011 Aug;62(12):4191-201. doi: 10.1093/jxb/err122. Epub 2011 May 11.
10
Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi.
PLoS One. 2010 Dec 9;5(12):e14281. doi: 10.1371/journal.pone.0014281.

本文引用的文献

1
Enzymatic Oxidation of Glucose to Glucosone in a Red Alga.
Science. 1956 Jul 27;124(3213):171-2. doi: 10.1126/science.124.3213.171.
2
Changes in the Ascorbate System during Seed Development of Vicia faba L.
Plant Physiol. 1992 May;99(1):235-8. doi: 10.1104/pp.99.1.235.
5
Ketose reductase activity in developing maize endosperm.
Plant Physiol. 1987 Jul;84(3):830-4. doi: 10.1104/pp.84.3.830.
6
Regulation of ascorbate oxidase expression in pumpkin by auxin and copper.
Plant Physiol. 1992 Sep;100(1):231-7. doi: 10.1104/pp.100.1.231.
9
Biological synthesis of ascorbic acid: L-galactono-gamma-lactone dehydrogenase.
Biochem J. 1958 Mar;68(3):395-406. doi: 10.1042/bj0680395.
10
The osones.
Adv Carbohydr Chem. 1956;48(11):43-96. doi: 10.1016/s0096-5332(08)60116-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验