Suppr超能文献

在两个延迟间隔执行匹配和不匹配样本任务期间的神经反应差异。

Differential neural responses during performance of matching and nonmatching to sample tasks at two delay intervals.

作者信息

Elliott R, Dolan R J

机构信息

Wellcome Department of Cognitive Neurology, Institute of Neurology, London WC1N 3BG, United Kingdom.

出版信息

J Neurosci. 1999 Jun 15;19(12):5066-73. doi: 10.1523/JNEUROSCI.19-12-05066.1999.

Abstract

Visual short-term memory in humans and animals is frequently assessed using delayed matching to sample (DMTS) and delayed nonmatching to sample (DNMTS) tasks across variable delay intervals. Although these tasks depend on certain common mechanisms, there are behavioral differences between them, and neuroimaging provides a means of assessing explicitly whether this is underpinned by differences at a neural level. Findings of delay-dependent deficits, after lesions in humans and animals, suggest that the neural implementation of these tasks may also critically depend on the delay interval. In this study we determined whether there were differential neural responses associated with DMTS and DNMTS tasks at two different delay intervals using functional magnetic resonance imaging. Ten healthy volunteers were studied under four test conditions: DMTS and DNMTS at 5 and 15 sec delay. The main effect of DMTS compared with DNMTS across both delay intervals was associated with significant activation in bilateral head of caudate and medial orbitofrontal cortex. By contrast, DNMTS compared with DMTS was associated with significant activation in mediodorsal thalamus, bilateral lateral orbitofrontal cortex, and left premotor cortex. The main effect of short compared with long delay, across both tasks, was associated with significantly greater activity in occipital and parietal cortices. By contrast, long compared with short delay was associated with significantly greater activity in temporal and ventrolateral frontal cortices. We conclude that DMTS and DNMTS are not equivalent and furthermore that the precise neural implementation of these tasks is a dynamic function of delay interval.

摘要

人类和动物的视觉短期记忆通常通过在不同延迟间隔下的延迟匹配样本(DMTS)和延迟不匹配样本(DNMTS)任务来评估。尽管这些任务依赖于某些共同机制,但它们之间存在行为差异,而神经影像学提供了一种明确评估这是否在神经层面存在差异的手段。人类和动物受损后出现的与延迟相关的缺陷表明,这些任务的神经执行可能也严重依赖于延迟间隔。在本研究中,我们使用功能磁共振成像确定在两个不同延迟间隔下,与DMTS和DNMTS任务相关的神经反应是否存在差异。对10名健康志愿者在四种测试条件下进行了研究:延迟5秒和15秒时的DMTS和DNMTS。在两个延迟间隔上,与DNMTS相比,DMTS的主要效应与双侧尾状核头部和内侧眶额皮质的显著激活相关。相比之下,与DMTS相比,DNMTS与中背丘脑、双侧外侧眶额皮质和左侧运动前皮质的显著激活相关。在两项任务中,与长延迟相比,短延迟的主要效应与枕叶和顶叶皮质中显著更强的活动相关。相比之下,与短延迟相比,长延迟与颞叶和腹外侧额叶皮质中显著更强的活动相关。我们得出结论,DMTS和DNMTS并不等同,而且这些任务精确的神经执行是延迟间隔的动态函数。

相似文献

1
Differential neural responses during performance of matching and nonmatching to sample tasks at two delay intervals.
J Neurosci. 1999 Jun 15;19(12):5066-73. doi: 10.1523/JNEUROSCI.19-12-05066.1999.
2
Working memory in capuchin monkeys (Cebus apella).
Behav Brain Res. 2002 Apr 1;131(1-2):131-7. doi: 10.1016/s0166-4328(01)00368-0.
4
Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
Prog Brain Res. 2006;159:311-30. doi: 10.1016/S0079-6123(06)59021-1.
5
Spatial attention and memory versus motor preparation: premotor cortex involvement as revealed by fMRI.
J Neurophysiol. 2002 Oct;88(4):2047-57. doi: 10.1152/jn.2002.88.4.2047.
6
The functional neuroanatomy of classic delayed response tasks in humans and the limitations of cross-method convergence in prefrontal function.
Neuroscience. 2006 Apr 28;139(1):327-37. doi: 10.1016/j.neuroscience.2005.08.067. Epub 2005 Dec 1.
8
Age differences in orbitofrontal activation: an fMRI investigation of delayed match and nonmatch to sample.
Neuroimage. 2004 Apr;21(4):1368-76. doi: 10.1016/j.neuroimage.2003.11.018.

引用本文的文献

1
The Nanotheranostic Researcher's Guide for Use of Animal Models of Traumatic Brain Injury.
J Nanotheranostics. 2021 Dec;2(4):224-268. doi: 10.3390/jnt2040014. Epub 2021 Dec 6.
2
Cerebellar Transcranial Magnetic Stimulation (TMS) Impairs Visual Working Memory.
Cerebellum. 2023 Jun;22(3):332-347. doi: 10.1007/s12311-022-01396-2. Epub 2022 Mar 31.
3
Cell-type-specific neuromodulation guides synaptic credit assignment in a spiking neural network.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2111821118.
5
Diurnal rhythms across the human dorsal and ventral striatum.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2016150118.
6
The Function of the Hippocampus in Bridging Functional and Temporal Discontiguity.
Neural Plast. 2020 Nov 7;2020:1049721. doi: 10.1155/2020/1049721. eCollection 2020.
7
Emergence of abstract rules in the primate brain.
Nat Rev Neurosci. 2020 Nov;21(11):595-610. doi: 10.1038/s41583-020-0364-5. Epub 2020 Sep 14.
9
Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis.
Brain Connect. 2017 Nov;7(9):602-616. doi: 10.1089/brain.2017.0500.
10
Impairment on a self-ordered working memory task in patients with early-acquired hippocampal atrophy.
Dev Cogn Neurosci. 2016 Aug;20:12-22. doi: 10.1016/j.dcn.2016.06.001. Epub 2016 Jun 3.

本文引用的文献

1
A Developmental Functional MRI Study of Prefrontal Activation during Performance of a Go-No-Go Task.
J Cogn Neurosci. 1997 Nov;9(6):835-47. doi: 10.1162/jocn.1997.9.6.835.
2
Visual recognition and recall after right temporal-lobe excision in man.
Epilepsy Behav. 2003 Dec;4(6):799-812. doi: 10.1016/j.yebeh.2003.08.027.
3
Right temporal-lobe damage. Perception of unfamiliar stimuli after damage.
Arch Neurol. 1963 Mar;8:264-71. doi: 10.1001/archneur.1963.00460030048004.
4
The human perirhinal cortex and recognition memory.
Hippocampus. 1998;8(4):330-9. doi: 10.1002/(SICI)1098-1063(1998)8:4<330::AID-HIPO3>3.0.CO;2-L.
6
The neural response in short-term visual recognition memory for perceptual conjunctions.
Neuroimage. 1998 Jan;7(1):14-22. doi: 10.1006/nimg.1997.0310.
7
Bilateral activation of fronto-parietal networks by incrementing demand in a working memory task.
Cereb Cortex. 1997 Jul-Aug;7(5):465-71. doi: 10.1093/cercor/7.5.465.
8
Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys.
Neuropsychologia. 1997 Jul;35(7):999-1015. doi: 10.1016/s0028-3932(97)00027-4.
9
Ventral prefrontal cortex is not essential for working memory.
J Neurosci. 1997 Jun 15;17(12):4829-38. doi: 10.1523/JNEUROSCI.17-12-04829.1997.
10
Visual working memory for shape and 3D-orientation: a PET study.
Neuroreport. 1997 Mar 3;8(4):859-62. doi: 10.1097/00001756-199703030-00010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验