Suppr超能文献

应用小波自适应滤波器使ST段失真最小化。

Application of a wavelet adaptive filter to minimise distortion of the ST-segment.

作者信息

Park K L, Lee K J, Yoon H R

机构信息

Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju City, Kangwon Do, Korea.

出版信息

Med Biol Eng Comput. 1998 Sep;36(5):581-6. doi: 10.1007/BF02524427.

Abstract

A wavelet adaptive filter (WAF) for the removal of baseline wandering in ECG signals is described. The WAF consists of two parts. The first part is a wavelet transform that decomposes the ECG signal into seven frequency bands using Vaidyanathan-Hoang wavelets. The second part is an adaptive filter that uses the signal of the seventh lowest-frequency band among the wavelet transformed signals as primary input and a constant as reference input. To evaluate the performance of the WAF, two baseline wandering elimination filters are used, a commercial standard filter with a cutoff frequency of 0.5 Hz and a general adaptive filter. The MIT/BIH database and the European ST-T database are used for the evaluation. The WAF performs better in the average power of eliminated noise than the standard filter and adaptive filter. Furthermore, it shows a lower ST-segment distortion than the standard filter and the adaptive filter.

摘要

描述了一种用于去除心电图(ECG)信号中基线漂移的小波自适应滤波器(WAF)。WAF由两部分组成。第一部分是小波变换,它使用Vaidyanathan-Hoang小波将ECG信号分解为七个频带。第二部分是自适应滤波器,它将小波变换信号中第七个最低频带的信号作为主要输入,并将一个常数作为参考输入。为了评估WAF的性能,使用了两个基线漂移消除滤波器,一个截止频率为0.5 Hz的商业标准滤波器和一个通用自适应滤波器。使用麻省理工学院/贝斯以色列女执事医疗中心(MIT/BIH)数据库和欧洲ST-T数据库进行评估。WAF在消除噪声的平均功率方面比标准滤波器和自适应滤波器表现更好。此外,它比标准滤波器和自适应滤波器显示出更低的ST段失真。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验