Suppr超能文献

白色念珠菌氟康唑耐药突变体中的特定染色体改变。

Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans.

作者信息

Perepnikhatka V, Fischer F J, Niimi M, Baker R A, Cannon R D, Wang Y K, Sherman F, Rustchenko E

机构信息

Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA.

出版信息

J Bacteriol. 1999 Jul;181(13):4041-9. doi: 10.1128/JB.181.13.4041-4049.1999.

Abstract

The exposure of Candida albicans to fluconazole resulted in the nondisjunction of two specific chromosomes in 17 drug-resistant mutants, each obtained by an independent mutational event. The chromosomal changes occurred at high frequencies and were related to the duration of the drug exposure. The loss of one homologue of chromosome 4 occurred after incubation on a fluconazole medium for 7 days. A second change, the gain of one copy of chromosome 3, was observed after exposure for 35 or 40 days. We found that the mRNA levels of ERG11, CDR1, CDR2, and MDR1, the candidate fluconazole resistance genes, remained either the same or were diminished. The lack of overexpression of putative drug pumps or the drug target indicated that some other mechanism(s) may be operating. The fluconazole resistance phenotype, electrophoretic karyotypes, and transcript levels of mutants were stable after growth for 112 generations in the absence of fluconazole. This is the first report to demonstrate that resistance to fluconazole can be dependent on chromosomal nondisjunction. Furthermore, we suggest that a low-level resistance to fluconazole arising during the early stages of clinical treatment may occur by this mechanism. These results support our earlier hypothesis that changes in C. albicans chromosome number is a common means to control a resource of potentially beneficial genes that are related to important cellular functions.

摘要

白色念珠菌暴露于氟康唑后,在17个耐药突变体中导致两条特定染色体的不分离,每个突变体均通过独立的突变事件获得。染色体变化发生频率很高,且与药物暴露持续时间有关。在氟康唑培养基上孵育7天后,出现了4号染色体一条同源染色体的缺失。暴露35天或40天后,观察到第二个变化,即3号染色体增加了一个拷贝。我们发现,氟康唑耐药候选基因ERG11、CDR1、CDR2和MDR1的mRNA水平保持不变或降低。假定的药物转运蛋白或药物靶点缺乏过表达表明可能存在其他作用机制。在无氟康唑的情况下生长112代后,突变体的氟康唑耐药表型、电泳核型和转录水平保持稳定。这是第一份证明对氟康唑的耐药性可能依赖于染色体不分离的报告。此外,我们认为在临床治疗早期出现的对氟康唑的低水平耐药可能是通过这种机制发生的。这些结果支持了我们早期的假设,即白色念珠菌染色体数目的变化是控制与重要细胞功能相关的潜在有益基因资源的常见方式。

相似文献

1
Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans.
J Bacteriol. 1999 Jul;181(13):4041-9. doi: 10.1128/JB.181.13.4041-4049.1999.
2
Expression of Major Efflux Pumps in Fluconazole-Resistant Candida albicans.
Infect Disord Drug Targets. 2017;17(3):178-184. doi: 10.2174/1871526517666170531114335.
3
Evolution of drug resistance in experimental populations of Candida albicans.
J Bacteriol. 2000 Mar;182(6):1515-22. doi: 10.1128/JB.182.6.1515-1522.2000.

引用本文的文献

1
The role of gene copy number variation in antimicrobial resistance in human fungal pathogens.
NPJ Antimicrob Resist. 2025 Jan 6;3:1. doi: 10.1038/s44259-024-00072-1. eCollection 2025.
2
The Candida Genome Database: annotation and visualization updates.
Genetics. 2025 Mar 17;229(3). doi: 10.1093/genetics/iyaf001.
3
Long-term stability of acquired drug resistance and resistance associated mutations in the fungal pathogen ().
Front Cell Infect Microbiol. 2024 Jul 15;14:1416509. doi: 10.3389/fcimb.2024.1416509. eCollection 2024.
4
Hsp90-Mediated Multi-Drug Resistance in DNA Polymerase-Defective Strains of .
J Fungi (Basel). 2024 Mar 19;10(3):222. doi: 10.3390/jof10030222.
6
Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Species.
Cells. 2023 Nov 19;12(22):2655. doi: 10.3390/cells12222655.
8
Antifungal Resistance Mechanisms and Associated Epidemiology.
J Fungi (Basel). 2023 Jul 28;9(8):798. doi: 10.3390/jof9080798.
10
Post-transcriptional control of antifungal resistance in human fungal pathogens.
Crit Rev Microbiol. 2023 Aug;49(4):469-484. doi: 10.1080/1040841X.2022.2080527. Epub 2022 May 28.

本文引用的文献

4
Clinical, cellular, and molecular factors that contribute to antifungal drug resistance.
Clin Microbiol Rev. 1998 Apr;11(2):382-402. doi: 10.1128/CMR.11.2.382.
5
Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans.
Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5150-5. doi: 10.1073/pnas.95.9.5150.
7
Multidrug transporters from bacteria to man: similarities in structure and function.
Semin Cancer Biol. 1997 Jun;8(3):183-91. doi: 10.1006/scbi.1997.0064.
8
The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter.
J Bacteriol. 1997 Dec;179(23):7210-8. doi: 10.1128/jb.179.23.7210-7218.1997.
9
Molecular biological characterization of an azole-resistant Candida glabrata isolate.
Antimicrob Agents Chemother. 1997 Oct;41(10):2229-37. doi: 10.1128/AAC.41.10.2229.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验