The effects of oestrogens on action potential and membrane currents were examined in single guinea-pig atrial myocytes. 2. 17Beta-estradiol (3-10 microM) shortened the action potential duration without significant changes in the resting membrane potential. E-4031 (1 microM) markedly prolonged the action potential duration and induced early afterdepolarization, and 17beta-estradiol (10 microM) abolished it. 3. When cells were perfused in isoproterenol-containing solution, action potentials due to abnormal automaticity caused by membrane depolarization developed, and were also inhibited by 17beta-estradiol. 4. Under voltage clamp conditions, the voltage-dependent Ca2+ currents consisted of both T-(I(Ca,T)) and L-type (I(Ca,L)). 17Beta-estradiol reduced I(Ca,L) concentration-dependently, while it (10 microM) suppressed I(Ca,T) only by approximately 10%. 17Beta-estradiol did not affect time courses of I(Ca,L) inactivation, but it shifted the steady-state inactivation curve to more negative potentials. 5. 17Beta-estradiol (10 microM) did not affect the time-dependent K+ current (I(K)), referred to as I(Kr) and I(Ks) and inwardly rectifying K+ current. However, 17beta-estradiol (30 microM) or diethylstilbestrol (10 microM) inhibited K+ currents. 6. DES and ethinylestradiol (EES) also suppressed I(Ca,L), but testosterone and progesterone failed to inhibit I(Ca,L) The potency of the inhibitory effect on I(Ca,L) was DES> EES> 17beta-estradiol. 7. 17Beta-estradiol and DES also inhibited the cyclic AMP-enhanced I(Ca,L), but cyclic GMP in the pipette or pretreatment of L-NAME could not block the effects of oestrogen on I(Ca,L). 8 These results suggest that oestrogen specifically has antiarrhythmic effects, possibly by acting the L-type Ca2+ channels. The antiarrhythmic effects of oestrogens may contribute to the cardioprotective actions of oestrogens.