Roux B
Groupe de Recherche en Transport Membranaire, Départements de physique et de chimie, Université de Montréal, C.P. 6128, Montréal H3C 3J7, Canada.
Biophys J. 1999 Jul;77(1):139-53. doi: 10.1016/S0006-3495(99)76878-5.
A rigorous statistical mechanical formulation of the equilibrium properties of selective ion channels is developed, incorporating the influence of the membrane potential, multiple occupancy, and saturation effects. The theory provides a framework for discussing familiar quantities and concepts in the context of detailed microscopic models. Statistical mechanical expressions for the free energy profile along the channel axis, the cross-sectional area of the pore, and probability of occupancy are given and discussed. In particular, the influence of the membrane voltage, the significance of the electric distance, and traditional assumptions concerning the linearity of the membrane electric field along the channel axis are examined. Important findings are: 1) the equilibrium probabilities of occupancy of multiply occupied channels have the familiar algebraic form of saturation properties which is obtained from kinetic models with discrete states of denumerable ion occupancy (although this does not prove the existence of specific binding sites; 2) the total free energy profile of an ion along the channel axis can be separated into an intrinsic ion-pore free energy potential of mean force, independent of the transmembrane potential, and other contributions that arise from the interfacial polarization; 3) the transmembrane potential calculated numerically for a detailed atomic configuration of the gramicidin A channel embedded in a bilayer membrane with explicit lipid molecules is shown to be closely linear over a distance of 25 A along the channel axis. Therefore, the present analysis provides some support for the constant membrane potential field approximation, a concept that has played a central role in the interpretation of flux data based on traditional models of ion permeation. It is hoped that this formulation will provide a sound physical basis for developing nonequilibrium theories of ion transport in selective biological channels.
我们提出了一种严格的统计力学公式,用于描述选择性离子通道的平衡性质,该公式纳入了膜电位、多重占据和饱和效应的影响。该理论提供了一个框架,用于在详细的微观模型背景下讨论常见的量和概念。给出并讨论了沿通道轴的自由能分布、孔的横截面积以及占据概率的统计力学表达式。特别地,研究了膜电压的影响、电距离的意义以及关于沿通道轴的膜电场线性的传统假设。重要发现如下:1)多重占据通道的平衡占据概率具有从具有可数离子占据离散状态的动力学模型中得到的常见饱和性质代数形式(尽管这并不能证明特定结合位点的存在);2)离子沿通道轴的总自由能分布可分为与跨膜电位无关的固有离子 - 孔平均力自由能势,以及由界面极化产生的其他贡献;3)对于嵌入具有明确脂质分子的双层膜中的短杆菌肽A通道的详细原子构型,数值计算得到的跨膜电位在沿通道轴25埃的距离上显示出近似线性。因此,本分析为恒定膜电位场近似提供了一些支持,该概念在基于传统离子渗透模型解释通量数据中发挥了核心作用。希望这个公式将为发展选择性生物通道中离子输运的非平衡理论提供坚实的物理基础。