Suppr超能文献

R2及其他位点特异性、非长末端重复逆转座元件所编码的核酸内切酶结构域的鉴定。

Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements.

作者信息

Yang J, Malik H S, Eickbush T H

机构信息

Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA.

出版信息

Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7847-52. doi: 10.1073/pnas.96.14.7847.

Abstract

The non-long terminal repeat (LTR) retrotransposon, R2, encodes a sequence-specific endonuclease responsible for its insertion at a unique site in the 28S rRNA genes of arthropods. Although most non-LTR retrotransposons encode an apurinic-like endonuclease upstream of a common reverse transcriptase domain, R2 and many other site-specific non-LTR elements do not (CRE1 and 2, SLACS, CZAR, Dong, R4). Sequence comparison of these site-specific elements has revealed that the region downstream of their reverse transcriptase domain is conserved and shares sequence features with various prokaryotic restriction endonucleases. In particular, these non-LTR elements have a Lys/Arg-Pro-Asp-X12-14aa-Asp/Glu motif known to lie near the scissile phosphodiester bonds in the protein-DNA complexes of restriction enzymes. Site-directed mutagenesis of the R2 protein was used to provide evidence that this motif is also part of the active site of the endonuclease encoded by this element. Mutations of this motif eliminate both DNA-cleavage activities of the R2 protein: first-strand cleavage in which the exposed 3' end is used to prime reverse transcription of the RNA template and second-strand cleavage, which occurs after reverse transcription. The general organization of the R2 protein appears similar to the type IIS restriction enzyme, FokI, in which specific DNA binding is controlled by a separate domain located amino terminal to the cleavage domain. Previous phylogenetic analysis of their reverse transcriptase domains has indicated that the non-LTR elements identified here as containing restriction-like endonucleases are the oldest lineages of non-LTR elements, suggesting a scenario for the evolution of non-LTR elements.

摘要

非长末端重复(LTR)逆转座子R2编码一种序列特异性内切核酸酶,该酶负责将其插入节肢动物28S rRNA基因的独特位点。尽管大多数非LTR逆转座子在常见的逆转录酶结构域上游编码一种脱嘌呤样内切核酸酶,但R2和许多其他位点特异性非LTR元件则不然(CRE1和2、SLACS、CZAR、Dong、R4)。对这些位点特异性元件的序列比较表明,其逆转录酶结构域下游的区域是保守的,并且与各种原核限制性内切核酸酶具有共同的序列特征。特别是,这些非LTR元件具有一个Lys/Arg-Pro-Asp-X12 - 14aa-Asp/Glu基序,已知该基序位于限制性内切酶的蛋白质-DNA复合物中易断裂的磷酸二酯键附近。利用对R2蛋白的定点诱变来提供证据,证明该基序也是由该元件编码的内切核酸酶活性位点的一部分。该基序的突变消除了R2蛋白的两种DNA切割活性:一是利用暴露的3'末端引发RNA模板逆转录的第一链切割,二是在逆转录后发生的第二链切割。R2蛋白的总体结构似乎与IIS型限制性内切酶FokI相似,在FokI中,特定的DNA结合由位于切割结构域氨基末端的一个单独结构域控制。先前对其逆转录酶结构域的系统发育分析表明,这里鉴定为含有类限制性内切核酸酶的非LTR元件是最古老的非LTR元件谱系,这为非LTR元件的进化提供了一种设想。

相似文献

2
The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods.
Mol Biol Evol. 1999 Apr;16(4):502-11. doi: 10.1093/oxfordjournals.molbev.a026132.
3
R4, a non-LTR retrotransposon specific to the large subunit rRNA genes of nematodes.
Nucleic Acids Res. 1995 Nov 25;23(22):4628-34. doi: 10.1093/nar/23.22.4628.
5
R5 retrotransposons insert into a family of infrequently transcribed 28S rRNA genes of planaria.
Mol Biol Evol. 2003 Aug;20(8):1260-70. doi: 10.1093/molbev/msg141. Epub 2003 May 30.
6
Footprint of the retrotransposon R2Bm protein on its target site before and after cleavage.
J Mol Biol. 2004 Mar 5;336(5):1035-45. doi: 10.1016/j.jmb.2003.12.077.
8
DNA-directed DNA polymerase and strand displacement activity of the reverse transcriptase encoded by the R2 retrotransposon.
J Mol Biol. 2007 Nov 23;374(2):322-33. doi: 10.1016/j.jmb.2007.09.047. Epub 2007 Sep 20.
9
Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase.
Nucleic Acids Res. 2014 Jul;42(13):8405-15. doi: 10.1093/nar/gku514. Epub 2014 Jun 23.
10
NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans.
Genetics. 2000 Jan;154(1):193-203. doi: 10.1093/genetics/154.1.193.

引用本文的文献

1
Biology and utilization of R2 retrotransposons.
RNA Biol. 2025 Dec;22(1):1-8. doi: 10.1080/15476286.2025.2521890. Epub 2025 Jun 25.
3
Reprogramming site-specific retrotransposon activity to new DNA sites.
Nature. 2025 Apr 9. doi: 10.1038/s41586-025-08877-4.
6
CRISPR technologies for genome, epigenome and transcriptome editing.
Nat Rev Mol Cell Biol. 2024 Jun;25(6):464-487. doi: 10.1038/s41580-023-00697-6. Epub 2024 Feb 2.
7
rDNA magnification is a unique feature of germline stem cells.
Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2314440120. doi: 10.1073/pnas.2314440120. Epub 2023 Nov 15.
8
The retrotransposon R2 maintains ribosomal DNA repeats.
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2221613120. doi: 10.1073/pnas.2221613120. Epub 2023 May 30.
9
Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription.
Science. 2023 Apr 21;380(6642):301-308. doi: 10.1126/science.adg7883. Epub 2023 Apr 6.

本文引用的文献

1
The age and evolution of non-LTR retrotransposable elements.
Mol Biol Evol. 1999 Jun;16(6):793-805. doi: 10.1093/oxfordjournals.molbev.a026164.
2
The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods.
Mol Biol Evol. 1999 Apr;16(4):502-11. doi: 10.1093/oxfordjournals.molbev.a026132.
4
FokI dimerization is required for DNA cleavage.
Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10570-5. doi: 10.1073/pnas.95.18.10570.
5
Structure of FokI has implications for DNA cleavage.
Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10564-9. doi: 10.1073/pnas.95.18.10564.
6
7
Are retrotransposons long-term hitchhikers?
Nature. 1998 Mar 12;392(6672):141-2. doi: 10.1038/32330.
8
Retrotransposon R1Bm endonuclease cleaves the target sequence.
Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2083-8. doi: 10.1073/pnas.95.5.2083.
10
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402. doi: 10.1093/nar/25.17.3389.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验