Bitinaite J, Wah D A, Aggarwal A K, Schildkraut I
New England Biolabs, Inc., 32 Tozer Road, Beverly, MA 01915, USA.
Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10570-5. doi: 10.1073/pnas.95.18.10570.
FokI is a type IIs restriction endonuclease comprised of a DNA recognition domain and a catalytic domain. The structural similarity of the FokI catalytic domain to the type II restriction endonuclease BamHI monomer suggested that the FokI catalytic domains may dimerize. In addition, the FokI structure, presented in an accompanying paper in this issue of Proceedings, reveals a dimerization interface between catalytic domains. We provide evidence here that FokI catalytic domain must dimerize for DNA cleavage to occur. First, we show that the rate of DNA cleavage catalyzed by various concentrations of FokI are not directly proportional to the protein concentration, suggesting a cooperative effect for DNA cleavage. Second, we constructed a FokI variant, FokN13Y, which is unable to bind the FokI recognition sequence but when mixed with wild-type FokI increases the rate of DNA cleavage. Additionally, the FokI catalytic domain that lacks the DNA binding domain was shown to increase the rate of wild-type FokI cleavage of DNA. We also constructed an FokI variant, FokD483A, R487A, which should be defective for dimerization because the altered residues reside at the putative dimerization interface. Consistent with the FokI dimerization model, the variant FokD483A, R487A revealed greatly impaired DNA cleavage. Based on our work and previous reports, we discuss a pathway of DNA binding, dimerization, and cleavage by FokI endonuclease.
FokI是一种IIS型限制性内切酶,由一个DNA识别结构域和一个催化结构域组成。FokI催化结构域与II型限制性内切酶BamHI单体的结构相似性表明,FokI催化结构域可能会二聚化。此外,在本期《会议录》的一篇随附论文中展示的FokI结构揭示了催化结构域之间的二聚化界面。我们在此提供证据表明,FokI催化结构域必须二聚化才能发生DNA切割。首先,我们表明不同浓度的FokI催化的DNA切割速率与蛋白质浓度不成正比,这表明DNA切割存在协同效应。其次,我们构建了一个FokI变体FokN13Y,它无法结合FokI识别序列,但与野生型FokI混合时会提高DNA切割速率。此外,缺乏DNA结合结构域的FokI催化结构域被证明会提高野生型FokI切割DNA的速率。我们还构建了一个FokI变体FokD483A、R487A,由于改变的残基位于假定的二聚化界面,它应该在二聚化方面存在缺陷。与FokI二聚化模型一致,变体FokD483A、R487A的DNA切割能力大大受损。基于我们的工作和先前的报道,我们讨论了FokI内切酶的DNA结合、二聚化和切割途径。