Suppr超能文献

辅酶M(2-巯基乙烷磺酸)在脂肪族环氧化物羧化细菌途径中的作用。

A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation.

作者信息

Allen J R, Clark D D, Krum J G, Ensign S A

机构信息

Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.

出版信息

Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8432-7. doi: 10.1073/pnas.96.15.8432.

Abstract

The bacterial metabolism of short-chain aliphatic alkenes occurs via oxidation to epoxyalkanes followed by carboxylation to beta-ketoacids. Epoxyalkane carboxylation requires four enzymes (components I-IV), NADPH, NAD(+), and a previously unidentified nucleophilic thiol. In the present work, coenzyme M (2-mercaptoethanesulfonic acid), a compound previously found only in the methanogenic Archaea where it serves as a methyl group carrier and activator, has been identified as the thiol and central cofactor of aliphatic epoxide carboxylation in the Gram-negative bacterium Xanthobacter strain Py2. Component I catalyzed the addition of coenzyme M to epoxypropane to form a beta-hydroxythioether, 2-(2-hydroxypropylthio)ethanesulfonate. Components III and IV catalyzed the NAD(+)-dependent stereoselective dehydrogenation of R- and S-enantiomers of 2-(2-hydroxypropylthio)ethanesulfonate to form 2-(2-ketopropylthio)ethanesulfonate. Component II catalyzed the NADPH-dependent cleavage and carboxylation of the beta-ketothioether to form acetoacetate and coenzyme M. These findings evince a newfound versatility for coenzyme M as a carrier and activator of alkyl groups longer in chain-length than methane, a function for coenzyme M in a catabolic pathway of hydrocarbon oxidation, and the presence of coenzyme M in the bacterial domain of the phylogenetic tree. These results serve to unify bacterial and Archaeal metabolism further and showcase diverse biological functions for an elegantly simple organic molecule.

摘要

短链脂肪族烯烃的细菌代谢过程是先氧化为环氧烷烃,然后羧化为β-酮酸。环氧烷烃羧化需要四种酶(组分I-IV)、NADPH、NAD(+)以及一种先前未鉴定的亲核硫醇。在本研究中,辅酶M(2-巯基乙烷磺酸),一种此前仅在产甲烷古菌中发现、作为甲基载体和激活剂的化合物,已被鉴定为革兰氏阴性菌黄杆菌属Py2菌株中脂肪族环氧化物羧化的硫醇和核心辅因子。组分I催化辅酶M加成到环氧丙烷上,形成β-羟基硫醚,即2-(2-羟丙基硫基)乙烷磺酸盐。组分III和IV催化2-(2-羟丙基硫基)乙烷磺酸盐的R-和S-对映体的NAD(+)依赖性立体选择性脱氢反应,形成2-(2-酮丙基硫基)乙烷磺酸盐。组分II催化β-酮硫醚的NADPH依赖性裂解和羧化反应,形成乙酰乙酸和辅酶M。这些发现表明辅酶M具有新发现的多功能性,可作为链长比甲烷更长的烷基的载体和激活剂,在烃类氧化的分解代谢途径中发挥作用,以及在系统发育树的细菌域中存在辅酶M。这些结果有助于进一步统一细菌和古菌的代谢,并展示了一种结构简单的有机分子具有多样的生物学功能。

相似文献

1
A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation.
Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8432-7. doi: 10.1073/pnas.96.15.8432.
2
Aliphatic epoxide carboxylation.
Annu Rev Biochem. 2003;72:55-76. doi: 10.1146/annurev.biochem.72.121801.161820. Epub 2003 Jan 8.
6
9
Getting a handle on the role of coenzyme M in alkene metabolism.
Microbiol Mol Biol Rev. 2008 Sep;72(3):445-56. doi: 10.1128/MMBR.00005-08.
10
New roles for CO2 in the microbial metabolism of aliphatic epoxides and ketones.
Arch Microbiol. 1998 Mar;169(3):179-87. doi: 10.1007/s002030050558.

引用本文的文献

1
Characterization of an isobutylene epoxide hydrolase (IbcK) from the isobutylene-catabolizing bacterium sp. ELW1.
Appl Environ Microbiol. 2025 Sep 17;91(9):e0039325. doi: 10.1128/aem.00393-25. Epub 2025 Aug 26.
2
Decarboxylation in Natural Products Biosynthesis.
JACS Au. 2024 Jul 25;4(8):2715-2745. doi: 10.1021/jacsau.4c00425. eCollection 2024 Aug 26.
5
The pathway for coenzyme M biosynthesis in bacteria.
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2207190119. doi: 10.1073/pnas.2207190119. Epub 2022 Aug 29.
7
Poplar phyllosphere harbors disparate isoprene-degrading bacteria.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13081-13086. doi: 10.1073/pnas.1812668115. Epub 2018 Nov 29.
9
Microbial degradation of chloroethenes: a review.
Environ Sci Pollut Res Int. 2017 May;24(15):13262-13283. doi: 10.1007/s11356-017-8867-y. Epub 2017 Apr 5.
10
Epoxyalkane:Coenzyme M Transferase Gene Diversity and Distribution in Groundwater Samples from Chlorinated-Ethene-Contaminated Sites.
Appl Environ Microbiol. 2016 May 16;82(11):3269-3279. doi: 10.1128/AEM.00673-16. Print 2016 Jun 1.

本文引用的文献

1
Microbial consumption of atmospheric isoprene in a temperate forest soil.
Appl Environ Microbiol. 1998 Jan;64(1):172-7. doi: 10.1128/AEM.64.1.172-177.1998.
3
Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture.
Microbiology (Reading). 1998 Sep;144 ( Pt 9):2377-2406. doi: 10.1099/00221287-144-9-2377.
4
The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1.
J Bacteriol. 1998 Oct;180(20):5351-6. doi: 10.1128/JB.180.20.5351-5356.1998.
5
Enzyme-catalyzed methyl transfers to thiols: the role of zinc.
Curr Opin Chem Biol. 1997 Oct;1(3):332-9. doi: 10.1016/s1367-5931(97)80070-1.
6
C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea.
Science. 1998 Jul 3;281(5373):99-102. doi: 10.1126/science.281.5373.99.
7
8
New roles for CO2 in the microbial metabolism of aliphatic epoxides and ketones.
Arch Microbiol. 1998 Mar;169(3):179-87. doi: 10.1007/s002030050558.
10
Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation.
Science. 1997 Nov 21;278(5342):1457-62. doi: 10.1126/science.278.5342.1457.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验