Allen J R, Clark D D, Krum J G, Ensign S A
Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8432-7. doi: 10.1073/pnas.96.15.8432.
The bacterial metabolism of short-chain aliphatic alkenes occurs via oxidation to epoxyalkanes followed by carboxylation to beta-ketoacids. Epoxyalkane carboxylation requires four enzymes (components I-IV), NADPH, NAD(+), and a previously unidentified nucleophilic thiol. In the present work, coenzyme M (2-mercaptoethanesulfonic acid), a compound previously found only in the methanogenic Archaea where it serves as a methyl group carrier and activator, has been identified as the thiol and central cofactor of aliphatic epoxide carboxylation in the Gram-negative bacterium Xanthobacter strain Py2. Component I catalyzed the addition of coenzyme M to epoxypropane to form a beta-hydroxythioether, 2-(2-hydroxypropylthio)ethanesulfonate. Components III and IV catalyzed the NAD(+)-dependent stereoselective dehydrogenation of R- and S-enantiomers of 2-(2-hydroxypropylthio)ethanesulfonate to form 2-(2-ketopropylthio)ethanesulfonate. Component II catalyzed the NADPH-dependent cleavage and carboxylation of the beta-ketothioether to form acetoacetate and coenzyme M. These findings evince a newfound versatility for coenzyme M as a carrier and activator of alkyl groups longer in chain-length than methane, a function for coenzyme M in a catabolic pathway of hydrocarbon oxidation, and the presence of coenzyme M in the bacterial domain of the phylogenetic tree. These results serve to unify bacterial and Archaeal metabolism further and showcase diverse biological functions for an elegantly simple organic molecule.
短链脂肪族烯烃的细菌代谢过程是先氧化为环氧烷烃,然后羧化为β-酮酸。环氧烷烃羧化需要四种酶(组分I-IV)、NADPH、NAD(+)以及一种先前未鉴定的亲核硫醇。在本研究中,辅酶M(2-巯基乙烷磺酸),一种此前仅在产甲烷古菌中发现、作为甲基载体和激活剂的化合物,已被鉴定为革兰氏阴性菌黄杆菌属Py2菌株中脂肪族环氧化物羧化的硫醇和核心辅因子。组分I催化辅酶M加成到环氧丙烷上,形成β-羟基硫醚,即2-(2-羟丙基硫基)乙烷磺酸盐。组分III和IV催化2-(2-羟丙基硫基)乙烷磺酸盐的R-和S-对映体的NAD(+)依赖性立体选择性脱氢反应,形成2-(2-酮丙基硫基)乙烷磺酸盐。组分II催化β-酮硫醚的NADPH依赖性裂解和羧化反应,形成乙酰乙酸和辅酶M。这些发现表明辅酶M具有新发现的多功能性,可作为链长比甲烷更长的烷基的载体和激活剂,在烃类氧化的分解代谢途径中发挥作用,以及在系统发育树的细菌域中存在辅酶M。这些结果有助于进一步统一细菌和古菌的代谢,并展示了一种结构简单的有机分子具有多样的生物学功能。