Gow A J, Luchsinger B P, Pawloski J R, Singel D J, Stamler J S
Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9027-32. doi: 10.1073/pnas.96.16.9027.
The oxidation of nitric oxide (NO) to nitrate by oxyhemoglobin is a fundamental reaction that shapes our understanding of NO biology. This reaction is considered to be the major pathway for NO elimination from the body; it is the basis for a prevalent NO assay; it is a critical feature in the modeling of NO diffusion in the circulatory system; and it informs a variety of therapeutic applications, including NO-inhalation therapy and blood substitute design. Here we show that, under physiological conditions, this reaction is of little significance. Instead, NO preferentially binds to the minor population of the hemoglobin's vacant hemes in a cooperative manner, nitrosylates hemoglobin thiols, or reacts with liberated superoxide in solution. In the red blood cell, superoxide dismutase eliminates superoxide, increasing the yield of S-nitrosohemoglobin and nitrosylated hemes. Hemoglobin thus serves to regulate the chemistry of NO and maintain it in a bioactive state. These results represent a reversal of the conventional view of hemoglobin in NO biology and motivate a reconsideration of fundamental issues in NO biochemistry and therapy.
氧合血红蛋白将一氧化氮(NO)氧化为硝酸盐是一个基本反应,它塑造了我们对NO生物学的理解。该反应被认为是NO从体内消除的主要途径;它是一种普遍使用的NO检测方法的基础;它是循环系统中NO扩散模型的一个关键特征;它还为包括NO吸入疗法和血液替代品设计在内的各种治疗应用提供了依据。在这里,我们表明,在生理条件下,该反应意义不大。相反,NO优先以协同方式与血红蛋白中少量的空血红素结合,使血红蛋白硫醇亚硝基化,或与溶液中释放的超氧化物反应。在红细胞中,超氧化物歧化酶消除超氧化物,增加S-亚硝基血红蛋白和亚硝基化血红素的产量。因此,血红蛋白起到调节NO化学性质并将其维持在生物活性状态的作用。这些结果代表了在NO生物学中对血红蛋白传统观点的颠覆,并促使人们重新思考NO生物化学和治疗中的基本问题。