Crichlow G V, Kuzin A P, Nukaga M, Mayama K, Sawai T, Knox J R
Department of Molecular and Cell Biology, The University of Connecticut, Storrs 06269-3125, USA.
Biochemistry. 1999 Aug 10;38(32):10256-61. doi: 10.1021/bi9908787.
A class C beta-lactamase from a clinical isolate of Enterobacter cloacae strain GC1 with improved hydrolytic activity for oxyimino beta-lactam antibiotics has been analyzed by X-ray crystallography to 1.8 A resolution. Relative to the wild-type P99 beta-lactamase, this natural mutant contains a highly unique tandem repeat Ala211-Val212-Arg213 [Nugaka et al. (1995) J. Biol. Chem. 270, 5729-5735]. The 39.4 kDa chromosomal beta-lactamase crystallizes from poly(ethylene glycol) 8000 in potassium phosphate in space group P2(1)2(1)2 with cell dimensions a = 78.0 A, b = 69.5 A, and c = 63.1 A. The crystal structure was solved by the molecular replacement method, and the model has been refined to an R-factor of 0.20 for all nonzero data from 8 to 1.8 A. Deviations of model bonds and angles from ideal values are 0.008 A and 1.4 degrees, respectively. Overlay of alpha-carbon atoms in the GC1 and P99 beta-lactamases results in an rms deviation of 0.6 A. Largest deviations occur in a loop containing Gln120 and in the Omega loop region (200-218) where the three residues 213-215 are disordered. Possibly as a result of this disorder, the width of the opening to the substrate binding cavity, as measured from the 318-324 beta-strand to two loops containing Gln120 and Tyr150 on the other side, is 0.6-1.4 A wider than in P99. It is suggested that conformational flexibility in the expanded Omega loop, and its influence on adjacent protein structure, may facilitate hydrolysis of oxyimino beta-lactams by making the acyl intermediate more open to attack by water. Nevertheless, backbone atoms in core catalytic site residues Ser64, Lys67, Tyr150, Asn152, Lys318, and Ser321 deviate only 0.4 A (rmsd) from atoms in P99. A rotation of a potential catalytic base, Tyr150, relative to P99 at pH 8, is consistent with the requirement for a lower than normal pK(a) for this residue.
已通过X射线晶体学分析了来自阴沟肠杆菌GC1临床分离株的一种C类β-内酰胺酶,其对氧亚氨基β-内酰胺抗生素具有更高的水解活性,分辨率达到1.8 Å。相对于野生型P99β-内酰胺酶,这种天然突变体含有高度独特的串联重复序列Ala211-Val212-Arg213 [Nugaka等人(1995年)《生物化学杂志》270, 5729 - 5735]。这种39.4 kDa的染色体β-内酰胺酶在聚乙二醇8000存在下,于磷酸钾中结晶,空间群为P2(1)2(1)2,晶胞参数a = 78.0 Å,b = 69.5 Å,c = 63.1 Å。晶体结构通过分子置换法解析,模型已针对8至1.8 Å的所有非零数据精修至R因子为0.20。模型键长和键角与理想值的偏差分别为0.008 Å和1.4度。GC1和P99β-内酰胺酶的α-碳原子叠加后的均方根偏差为0.6 Å。最大偏差出现在包含Gln120的环和Ω环区域(200 - 218),其中213 - 215这三个残基无序。可能由于这种无序,从318 - 324β-链到另一侧包含Gln120和Tyr150的两个环测量,底物结合腔开口的宽度比P99宽0.6 - 1.4 Å。有人认为,扩展的Ω环中的构象灵活性及其对相邻蛋白质结构的影响,可能通过使酰基中间体更易于受到水的攻击来促进氧亚氨基β-内酰胺的水解。然而,核心催化位点残基Ser64、Lys67、Tyr150、Asn152、Lys318和Ser321中的主链原子与P99中的原子的偏差仅为0.4 Å(均方根偏差)。在pH 8时,潜在催化碱基Tyr150相对于P99的旋转与该残基低于正常pK(a)的要求一致。