Suppr超能文献

Ω环在A类β-内酰胺酶的活性、底物特异性及结构中的作用

Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase.

作者信息

Banerjee S, Pieper U, Kapadia G, Pannell L K, Herzberg O

机构信息

Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA.

出版信息

Biochemistry. 1998 Mar 10;37(10):3286-96. doi: 10.1021/bi972127f.

Abstract

The structure of class A beta-lactamases contains an omega-loop associated with the active site, which carries a key catalytic residue, Glu166. A 16-residue omega-loop deletion mutant of beta-lactamase from Staphylococcus aureus PC1, encompassing residues 163-178, was produced in order to examine the functional and structural role of the loop. The crystal structure was determined and refined at 2.3 A, and the kinetics of the mutant enzyme was characterized with a variety of beta-lactam antibiotics. In general, the wild-type beta-lactamase hydrolyzes penicillin compounds better than cephalosporins. In contrast, the deletion of the omega-loop led to a variant enzyme that acts only on cephalosporins, including third generation compounds. Kinetic measurements and electrospray mass spectrometry revealed that the first and third generation cephalosporins form stable acyl-enzyme complexes, except for the chromogenic cephalosporin, nitrocefin, which after acylating the enzyme undergoes hydrolysis at a 1000-fold slower rate than that with wild-type beta-lactamase. Hydrolysis of the acyl-enzyme adducts is prevented because the deletion of the omega-loop eliminates the deacylation apparatus comprising Glu166 and its associated nucleophilic water site. The crystal structure reveals that while the overall fold of the mutant enzyme is similar to that of the native beta-lactamase, local adjustments in the vicinity of the missing loop occurred. The altered beta-lactam specificity is attributed to these structural changes. In the native structure, the omega-loop restricts the conformation of a beta-strand at the edge of the active site depression. Removal of the loop provides the beta-strand with a new degree of conformational flexibility, such that it is displaced inward toward the active site space. Modeled Michaelis complexes with benzylpenicillin and cephaloridine show that the perturbed conformation of the beta-strand is inconsistent with penicillin binding because of steric clashes between the beta-lactam side chain substituent and the beta-strand. In contrast, no clashes occur upon cephalosporin binding. Recognition of third generation cephalosporins is possible because the bulky side chain substituents of the beta-lactam ring typical of these compounds can be accommodated in the space freed by the deletion of the omega-loop.

摘要

A类β-内酰胺酶的结构包含一个与活性位点相关的ω-环,该环带有一个关键催化残基Glu166。为了研究该环的功能和结构作用,构建了来自金黄色葡萄球菌PC1的β-内酰胺酶的一个16个残基的ω-环缺失突变体,其包含163 - 178位残基。测定并在2.3 Å分辨率下精修了该突变体的晶体结构,并用多种β-内酰胺抗生素对突变酶的动力学进行了表征。一般来说,野生型β-内酰胺酶水解青霉素类化合物的能力优于头孢菌素类。相比之下,ω-环的缺失导致一种变体酶,它仅作用于头孢菌素类,包括第三代化合物。动力学测量和电喷雾质谱显示,除了生色头孢菌素硝噻吩外,第一代和第三代头孢菌素形成稳定的酰基酶复合物,硝噻吩酰化酶后水解速度比野生型β-内酰胺酶慢1000倍。由于ω-环的缺失消除了由Glu166及其相关亲核水位点组成的去酰化装置,因此阻止了酰基酶加合物的水解。晶体结构显示,虽然突变酶的整体折叠与天然β-内酰胺酶相似,但在缺失环附近发生了局部调整。β-内酰胺特异性的改变归因于这些结构变化。在天然结构中,ω-环限制了活性位点凹陷边缘处一条β-链的构象。环的去除为β-链提供了新的构象灵活性,使其向内朝着活性位点空间位移。用苄青霉素和头孢菌素构建的米氏复合物模型表明,由于β-内酰胺侧链取代基与β-链之间的空间冲突,β-链的扰动构象与青霉素结合不一致。相比之下,头孢菌素结合时不会发生冲突。能够识别第三代头孢菌素是因为这些化合物典型的β-内酰胺环的庞大侧链取代基可以容纳在ω-环缺失所腾出的空间中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验