Suppr超能文献

无血管实体肿瘤生长模型的弱非线性分析

A weakly nonlinear analysis of a model of avascular solid tumour growth.

作者信息

Byrne H M

机构信息

Department of Mathematics, UMIST, Manchester, UK.

出版信息

J Math Biol. 1999 Jul;39(1):59-89. doi: 10.1007/s002850050163.

Abstract

In this paper we study a mathematical model that describes the growth of an avascular solid tumour. Our analysis concentrates on the stability of steady, radially-symmetric model solutions with respect to perturbations taken from the class of spherical harmonics. Using weakly nonlinear analysis, previous results are extended to show how the amplitudes of the asymmetric modes interact. Attention focuses on a special case for which the model equations simplify. Analysis of the simplified model equations leads to the identification of a two-parameter family of asymmetric steady solutions, the dimensions of whose stable and unstable manifolds depend on the system parameters. The asymmetric steady solutions limit the basin of attraction of the radially-symmetric steady state when it is linearly stable. On the basis of these numerical and analytical results we postulate the existence of fully nonlinear steady solutions which are stable with respect to time-dependent perturbations.

摘要

在本文中,我们研究了一个描述无血管实体肿瘤生长的数学模型。我们的分析集中于稳态径向对称模型解相对于来自球谐函数类的扰动的稳定性。利用弱非线性分析,扩展了先前的结果以展示非对称模式的振幅如何相互作用。注意力集中在模型方程得以简化的一个特殊情形。对简化后的模型方程进行分析,得到了一族双参数非对称稳态解,其稳定流形和不稳定流形的维度取决于系统参数。当径向对称稳态线性稳定时,非对称稳态解限制了其吸引域。基于这些数值和分析结果,我们推测存在对于含时扰动稳定的完全非线性稳态解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验