College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, People's Republic of China.
J Biol Dyn. 2024 Dec;18(1):2295492. doi: 10.1080/17513758.2023.2295492. Epub 2023 Dec 22.
We study an avascular spherical solid tumour model with cell physiological age and resource constraints in vivo. We divide the tumour cells into three components: proliferating cells, quiescent cells and dead cells in necrotic core. We assume that the division rate of proliferating cells is nonlinear due to the nutritional and spatial constraints. The proportion of newborn tumour cells entering directly into quiescent state is considered, since this proportion can respond to the therapeutic effect of drug. We establish a nonlinear age-structured tumour cell population model. We investigate the existence and uniqueness of the model solution and explore the local and global stabilities of the tumour-free steady state. The existence and local stability of the tumour steady state are studied. Finally, some numerical simulations are performed to verify the theoretical results and to investigate the effects of different parameters on the model.
我们研究了一种具有细胞生理年龄和体内资源限制的无血管球形实体肿瘤模型。我们将肿瘤细胞分为三个组成部分:增殖细胞、静止细胞和坏死核心中的死亡细胞。我们假设由于营养和空间限制,增殖细胞的分裂率是非线性的。考虑到新生肿瘤细胞直接进入静止状态的比例,因为这个比例可以对药物的治疗效果做出反应。我们建立了一个非线性的年龄结构肿瘤细胞群体模型。我们研究了模型解的存在性和唯一性,并探讨了无肿瘤稳定状态的局部和全局稳定性。研究了肿瘤稳定状态的存在性和局部稳定性。最后,进行了一些数值模拟来验证理论结果,并研究了不同参数对模型的影响。