Stemmler M, Koch C
Innovationskolleg Theoretische Biologie, Invalidenstr. 43, D-10115 Berlin, Germany.
Nat Neurosci. 1999 Jun;2(6):521-7. doi: 10.1038/9173.
Information from the senses must be compressed into the limited range of responses that spiking neurons can generate. For optimal compression, the neuron's response should match the statistics of stimuli encountered in nature. Given a maximum firing rate, a nerve cell should learn to use each available firing rate equally often. Given a set mean firing rate, it should self-organize to respond with high firing rates only to comparatively rare events. Here we derive an unsupervised learning rule that continuously adapts membrane conductances of a Hodgkin-Huxley model neuron to optimize the representation of sensory information in the firing rate. Maximizing information transfer between the stimulus and the cell's firing rate can be interpreted as a non-Hebbian developmental mechanism.
来自感官的信息必须被压缩到尖峰神经元能够产生的有限反应范围内。为了实现最佳压缩,神经元的反应应与自然界中遇到的刺激的统计特征相匹配。在给定最大放电率的情况下,神经细胞应学会同等频繁地使用每个可用的放电率。在给定设定平均放电率的情况下,它应进行自组织,仅对相对罕见的事件以高放电率做出反应。在这里,我们推导了一种无监督学习规则,该规则不断调整霍奇金-赫胥黎模型神经元的膜电导,以优化放电率中感官信息的表示。刺激与细胞放电率之间信息传递的最大化可被解释为一种非赫布式发育机制。