Suppr超能文献

暂态神经膜:一种基于脉冲时间进行决策学习的神经元。

The tempotron: a neuron that learns spike timing-based decisions.

作者信息

Gütig Robert, Sompolinsky Haim

机构信息

Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel.

出版信息

Nat Neurosci. 2006 Mar;9(3):420-8. doi: 10.1038/nn1643. Epub 2006 Feb 12.

Abstract

The timing of action potentials in sensory neurons contains substantial information about the eliciting stimuli. Although the computational advantages of spike timing-based neuronal codes have long been recognized, it is unclear whether, and if so how, neurons can learn to read out such representations. We propose a new, biologically plausible supervised synaptic learning rule that enables neurons to efficiently learn a broad range of decision rules, even when information is embedded in the spatiotemporal structure of spike patterns rather than in mean firing rates. The number of categorizations of random spatiotemporal patterns that a neuron can implement is several times larger than the number of its synapses. The underlying nonlinear temporal computation allows neurons to access information beyond single-neuron statistics and to discriminate between inputs on the basis of multineuronal spike statistics. Our work demonstrates the high capacity of neural systems to learn to decode information embedded in distributed patterns of spike synchrony.

摘要

感觉神经元中动作电位的时间包含有关引发刺激的大量信息。尽管基于脉冲时间的神经元编码的计算优势早已得到认可,但尚不清楚神经元是否能够以及如何学会读出此类表征。我们提出了一种新的、具有生物学合理性的监督突触学习规则,该规则使神经元能够有效地学习广泛的决策规则,即使信息嵌入在脉冲模式的时空结构中而非平均发放率中。神经元能够实现的随机时空模式的分类数量比其突触数量大几倍。潜在的非线性时间计算使神经元能够获取超出单神经元统计的信息,并基于多神经元脉冲统计来区分输入。我们的工作证明了神经系统学习解码嵌入在脉冲同步分布式模式中的信息的高能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验