Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
Department of Neurobiology, University of Chicago, Chicago, IL, USA.
J Physiol. 2023 Aug;601(15):3221-3239. doi: 10.1113/JP283473. Epub 2022 Aug 11.
Activity-dependent changes in membrane excitability are observed in neurons across brain areas and represent a cell-autonomous form of plasticity (intrinsic plasticity; IP) that in itself does not involve alterations in synaptic strength (synaptic plasticity; SP). Non-homeostatic IP may play an essential role in learning, e.g. by changing the action potential threshold near the soma. A computational problem, however, arises from the implication that such amplification does not discriminate between synaptic inputs and therefore may reduce the resolution of input representation. Here, we investigate consequences of IP for the performance of an artificial neural network in (a) the discrimination of unknown input patterns and (b) the recognition of known/learned patterns. While negative changes in threshold potentials in the output layer indeed reduce its ability to discriminate patterns, they benefit the recognition of known but incompletely presented patterns. An analysis of thresholds and IP-induced threshold changes in published sets of physiological data obtained from whole-cell patch-clamp recordings from L2/3 pyramidal neurons in (a) the primary visual cortex (V1) of awake macaques and (b) the primary somatosensory cortex (S1) of mice in vitro, respectively, reveals a difference between resting and threshold potentials of ∼15 mV for V1 and ∼25 mV for S1, and a total plasticity range of ∼10 mV (S1). The most efficient activity pattern to lower threshold is paired cholinergic and electric activation. Our findings show that threshold reduction promotes a shift in neural coding strategies from accurate faithful representation to interpretative assignment of input patterns to learned object categories. KEY POINTS: Intrinsic plasticity may change the action potential threshold near the soma of neurons (threshold plasticity), thus altering the input-output function for all synaptic inputs 'upstream' of the plasticity location. A potential problem arising from this shared amplification is that it may reduce the ability to discriminate between different input patterns. Here, we assess the performance of an artificial neural network in the discrimination of unknown input patterns as well as the recognition of known patterns subsequent to changes in the spike threshold. We observe that negative changes in threshold potentials do reduce discrimination performance, but at the same time improve performance in an object recognition task, in particular when patterns are incompletely presented. Analysis of whole-cell patch-clamp recordings from pyramidal neurons in the primary somatosensory cortex (S1) of mice reveals that negative threshold changes preferentially result from electric stimulation of neurons paired with the activation of muscarinic acetylcholine receptors.
活动依赖性的膜兴奋性变化在大脑区域的神经元中被观察到,代表一种自主形式的可塑性(内在可塑性;IP),它本身并不涉及突触强度的改变(突触可塑性;SP)。非平衡的 IP 可能在学习中发挥重要作用,例如通过改变靠近胞体的动作电位阈值。然而,一个计算问题出现了,因为这意味着这种放大不能区分突触输入,因此可能会降低输入表示的分辨率。在这里,我们研究了 IP 对(a)未知输入模式的区分和(b)已知/学习模式的识别的人工神经网络性能的影响。虽然输出层的阈值电位的负变化确实降低了其区分模式的能力,但它们有利于识别已知但不完全呈现的模式。对从(a)清醒猕猴的初级视觉皮层(V1)和(b)体外的初级躯体感觉皮层(S1)的全细胞贴片记录中获得的已发表的生理数据集中的阈值和 IP 诱导的阈值变化的分析,揭示了 V1 约为 15 mV,S1 约为 25 mV 的静息电位和阈值电位之间的差异,以及约 10 mV(S1)的总可塑性范围。降低阈值最有效的活动模式是成对的胆碱能和电激活。我们的研究结果表明,阈值降低促进了从准确忠实的表示到将输入模式解释性地分配给学习的对象类别的神经编码策略的转变。要点:内在可塑性可以改变神经元胞体附近的动作电位阈值(阈值可塑性),从而改变可塑性位置“上游”的所有突触输入的输入-输出功能。这种共享放大带来的一个潜在问题是,它可能会降低区分不同输入模式的能力。在这里,我们评估了人工神经网络在未知输入模式的区分以及已知模式后续的尖峰阈值变化的识别中的性能。我们观察到,阈值电位的负变化确实降低了区分性能,但同时提高了对象识别任务的性能,特别是当模式不完全呈现时。对来自体外小鼠初级躯体感觉皮层(S1)的锥体神经元的全细胞贴片记录的分析表明,负阈值变化主要是由于与烟碱型乙酰胆碱受体激活配对的神经元的电刺激引起的。