Suppr超能文献

Interaction of nucleotides with Asp(351) and the conserved phosphorylation loop of sarcoplasmic reticulum Ca(2+)-ATPase.

作者信息

McIntosh D B, Woolley D G, MacLennan D H, Vilsen B, Andersen J P

机构信息

Department of Chemical Pathology, University of Cape Town Medical School, 7925 Cape Town, South Africa.

出版信息

J Biol Chem. 1999 Sep 3;274(36):25227-36. doi: 10.1074/jbc.274.36.25227.

Abstract

The nucleotide binding properties of mutants with alterations to Asp(351) and four of the other residues in the conserved phosphorylation loop, (351)DKTGTLT(357), of sarcoplasmic reticulum Ca(2+)-ATPase were investigated using an assay based on the 2', 3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine triphosphate (TNP-8N(3)-ATP) photolabeling of Lys(492) and competition with ATP. In selected cases where the competition assay showed extremely high affinity, ATP binding was also measured by a direct filtration assay. At pH 8.5 in the absence of Ca(2+), mutations removing the negative charge of Asp(351) (D351N, D351A, and D351T) produced pumps that bound MgTNP-8N(3)-ATP and MgATP with affinities 20-156-fold higher than wild type (K(D) as low as 0.006 microM), whereas the affinity of mutant D351E was comparable with wild type. Mutations K352R, K352Q, T355A, and T357A lowered the affinity for MgATP and MgTNP-8N(3)-ATP 2-1000- and 1-6-fold, respectively, and mutation L356T completely prevented photolabeling of Lys(492). In the absence of Ca(2+), mutants D351N and D351A exhibited the highest nucleotide affinities in the presence of Mg(2+) and at alkaline pH (E1 state). The affinity of mutant D351A for MgATP was extraordinarily high in the presence of Ca(2+) (K(D) = 0.001 microM), suggesting a transition state like configuration at the active site under these conditions. The mutants with reduced ATP affinity, as well as mutants D351N and D351A, exhibited reduced or zero CrATP-induced Ca(2+) occlusion due to defective CrATP binding.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验