Kissi B, Badrane H, Audry L, Lavenu A, Tordo N, Brahimi M, Bourhy H
Rabies Unit1 and Lyssavirus Laboratory2, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
Institut Pasteur d'Algérie, Alger, Algeria3.
J Gen Virol. 1999 Aug;80 ( Pt 8):2041-2050. doi: 10.1099/0022-1317-80-8-2041.
To understand the mutations and genetic rearrangements that allow rabies virus infections of new hosts and adaptation in nature, the quasispecies structure of the nucleoprotein and glycoprotein genes as well as two noncoding sequences of a rabies virus genome were determined. Gene sequences were obtained from the brain and from the salivary glands of the original host, a naturally infected European fox, and after serial passages in mice, dogs, cats and cell culture. A relative genetic stasis of the consensus sequences confirmed previous results about the stability of rabies virus. At the quasispecies level, the mutation frequency varies, in the following order: glycoprotein region (21.9 x 10(-4) mutations per bp), noncoding sequence nucleoprotein-phosphoprotein region (7.2-7.9 x 10(-4) mutations per bp) and nucleoprotein gene region (2.9-3.7 x 10(-4) mutations per bp). These frequencies varied according to the number, type of heterologous passages and the genomic region considered. The shape of the quasispecies structure was dramatically modified by passages in mice, in which the mutation frequencies increased by 12-31 x 10(-4) mutations per bp, depending on the region considered. Non-synonymous mutations were preponderant particularly in the glycoprotein gene, stressing the importance of positive selection in the maintenance and fixation of substitutions. Two mechanisms of genomic evolution of the rabies virus quasispecies, while adapting to environmental changes, have been identified: a limited accumulation of mutations with no replacement of the original master sequence and a less frequent but rapid selective overgrowth of favoured variants.
为了解使狂犬病毒能够感染新宿主并在自然环境中适应的突变和基因重排情况,我们测定了狂犬病毒核蛋白和糖蛋白基因的准种结构以及病毒基因组的两个非编码序列。基因序列取自原始宿主(一只自然感染的欧洲狐狸)的脑和唾液腺,以及在小鼠、狗、猫和细胞培养物中连续传代后的样本。共有序列的相对遗传稳定性证实了先前关于狂犬病毒稳定性的研究结果。在准种水平上,突变频率各不相同,顺序如下:糖蛋白区域(每碱基对21.9×10⁻⁴个突变)、核蛋白 - 磷蛋白区域的非编码序列(每碱基对7.2 - 7.9×10⁻⁴个突变)和核蛋白基因区域(每碱基对2.9 - 3.7×10⁻⁴个突变)。这些频率因异源传代的次数、类型以及所考虑的基因组区域而异。在小鼠中传代后,准种结构的形状发生了显著改变,根据所考虑的区域不同,突变频率每碱基对增加了12 - 31×10⁻⁴个突变。非同义突变尤为突出,特别是在糖蛋白基因中,这凸显了正向选择在维持和固定替换中的重要性。在适应环境变化的过程中,已确定狂犬病毒准种基因组进化的两种机制:突变的有限积累且原始主序列未被取代,以及受青睐变体较少见但快速的选择性过度生长。