Dirksen R T, Beam K G
Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642, USA.
J Gen Physiol. 1999 Sep;114(3):393-403. doi: 10.1085/jgp.114.3.393.
The skeletal and cardiac muscle dihydropyridine receptors (DHPRs) differ with respect to their rates of channel activation and in the means by which they control Ca2+ release from the sarcoplasmic reticulum (Adams, B.A., and K.G. Beam. 1990. FASEB J. 4:2809-2816). We have examined the functional properties of skeletal (SkEIIIK) and cardiac (CEIIIK) DHPRs in which a highly conserved glutamate residue in the pore region of repeat III was mutated to a positively charged lysine residue. Using expression in dysgenic myotubes, we have characterized macroscopic ionic currents, intramembrane gating currents, and intracellular Ca2+ transients attributable to these two mutant DHPRs. CEIIIK supported very small inward Ca2+ currents at a few potentials (from -20 to +20 mV) and large outward cesium currents at potentials greater than +20 mV. SkEIIIK failed to support inward Ca2+ flux at any potential. However, large, slowly activating outward cesium currents were observed at all potentials greater than + 20 mV. The difference in skeletal and cardiac Ca2+ channel activation kinetics was conserved for outward currents through CEIIIK and SkEIIIK, even at very depolarized potentials (at +100 mV; SkEIIIK: tau(act) = 30.7 +/- 1.9 ms, n = 11; CEIIIK: tau(act) = 2.9 +/- 0.5 ms, n = 7). Expression of SkEIIIK in dysgenic myotubes restored both evoked contractions and depolarization-dependent intracellular Ca(2+) transients with parameters of voltage dependence (V(0.5) = 6.5 +/- 3.2 mV and k = 9.3 +/- 0.7 mV, n = 5) similar to those for the wild-type DHPR (Garcia, J., T. Tanabe, and K.G. Beam. 1994. J. Gen. Physiol. 103:125-147). However, CEIIIK-expressing myotubes never contracted and failed to exhibit depolarization-dependent intracellular Ca2+ transients at any potential. Thus, high Ca2+ permeation is required for cardiac-type excitation-contraction coupling reconstituted in dysgenic myotubes, but not skeletal-type. The strong rectification of the EIIIK channels made it possible to obtain measurements of gating currents upon repolarization to -50 mV (Qoff) following either brief (20 ms) or long (200 ms) depolarizing pulses to various test potentials. For SkEIIIK, and not CEIIK, Qoff was significantly (P < 0.001) larger after longer depolarizations to +60 mV (121.4 +/- 2.0%, n = 6). The increase in Qoff for long depolarizations exhibited a voltage dependence similar to that of channel activation. Thus, the increase in Q(off) may reflect a voltage sensor movement required for activation of L-type Ca2+ current and suggests that most DHPRs in skeletal muscle undergo this voltage-dependent transition.
骨骼肌和心肌的二氢吡啶受体(DHPRs)在通道激活速率以及控制肌浆网释放Ca2+的方式上存在差异(亚当斯,B.A.,和K.G.比姆。1990年。《美国实验生物学会联合会杂志》4:2809 - 2816)。我们研究了骨骼肌(SkEIIIK)和心肌(CEIIIK)DHPRs的功能特性,其中重复III孔区域中一个高度保守的谷氨酸残基被突变为带正电荷的赖氨酸残基。通过在发育不全的肌管中表达,我们对这两种突变DHPRs所产生的宏观离子电流、膜内门控电流和细胞内Ca2+瞬变进行了表征。CEIIIK在少数电位(从 - 20到 + 20 mV)下支持非常小的内向Ca2+电流,在大于 + 20 mV的电位下支持大的外向铯电流。SkEIIIK在任何电位下都不支持内向Ca2+通量。然而,在大于 + 20 mV的所有电位下都观察到了大的、缓慢激活的外向铯电流。即使在非常去极化的电位(+100 mV时;SkEIIIK:tau(act) = 30.7 +/- 1.9 ms,n = 11;CEIIIK:tau(act) = 2.9 +/- 0.5 ms,n = 7)下,通过CEIIIK和SkEIIIK的外向电流中,骨骼肌和心肌Ca2+通道激活动力学的差异仍然存在。SkEIIIK在发育不全的肌管中的表达恢复了诱发收缩和去极化依赖性细胞内Ca(2+)瞬变,其电压依赖性参数(V(0.5) = 6.5 +/- 3.2 mV和k = 9.3 +/- 0.7 mV,n = 5)与野生型DHPR相似(加西亚,J.,T.田边,和K.G.比姆。1994年。《普通生理学杂志》103:125 - 147)。然而,表达CEIIIK的肌管在任何电位下都从未收缩,也未表现出去极化依赖性细胞内Ca2+瞬变。因此,在发育不全的肌管中重建心肌型兴奋 - 收缩偶联需要高Ca2+通透性,但骨骼肌型则不需要。EIIIK通道的强整流特性使得在向各种测试电位进行短暂(20 ms)或长时间(200 ms)去极化脉冲后,复极化到 - 50 mV(Qoff)时能够测量门控电流。对于SkEIIIK,而不是CEIIK,在更长时间去极化到 + 60 mV后,Qoff显著(P < 0.001)更大(121.4 +/- 2.0%,n = 6)。长时间去极化时Qoff的增加表现出与通道激活相似的电压依赖性。因此,Q(off)的增加可能反映了激活L型Ca2+电流所需的电压传感器移动,并表明骨骼肌中的大多数DHPRs会经历这种电压依赖性转变。