Hilgemann D W, Lu C C
Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9040, USA.
J Gen Physiol. 1999 Sep;114(3):459-75. doi: 10.1085/jgp.114.3.459.
We have developed an alternating access transport model that accounts well for GAT1 (GABA:Na+:Cl-) cotransport function in Xenopus oocyte membranes. To do so, many alternative models were fitted to a database on GAT1 function, and discrepancies were analyzed. The model assumes that GAT1 exists predominantly in two states, Ein and E(out). In the Ein state, one chloride and two sodium ions can bind sequentially from the cytoplasmic side. In the Eout state, one sodium ion is occluded within the transporter, and one chloride, one sodium, and one gamma-aminobutyric acid (GABA) molecule can bind from the extracellular side. When Ein sites are empty, a transition to the Eout state opens binding sites to the outside and occludes one extracellular sodium ion. This conformational change is the major electrogenic GAT1 reaction, and it rate-limits forward transport (i.e., GABA uptake) at 0 mV. From the Eout state, one GABA can be translocated with one sodium ion to the cytoplasmic side, thereby forming the *Ein state. Thereafter, an extracellular chloride ion can be translocated and the occluded sodium ion released to the cytoplasm, which returns the transporter to the Ein state. GABA-GABA exchange can occur in the absence of extracellular chloride, but a chloride ion must be transported to complete a forward transport cycle. In the reverse transport cycle, one cytoplasmic chloride ion binds first to the Ein state, followed by two sodium ions. One chloride ion and one sodium ion are occluded together, and thereafter the second sodium ion and GABA are occluded and translocated. The weak voltage dependence of these reactions determines the slopes of outward current-voltage relations. Experimental results that are simulated accurately include (a) all current-voltage relations, (b) all substrate dependencies described to date, (c) cis-cis and cis-trans substrate interactions, (d) charge movements in the absence of transport current, (e) dependencies of charge movement kinetics on substrate concentrations, (f) pre-steady state current transients in the presence of substrates, (g) substrate-induced capacitance changes, (h) GABA-GABA exchange, and (i) the existence of inward transport current and GABA-GABA exchange in the nominal absence of extracellular chloride.
我们开发了一种交替访问运输模型,该模型能很好地解释非洲爪蟾卵母细胞膜中GAT1(γ-氨基丁酸:钠离子:氯离子)共转运功能。为此,我们将许多替代模型与一个关于GAT1功能的数据库进行拟合,并分析差异。该模型假设GAT1主要以两种状态存在,即内向状态(Ein)和外向状态(E(out))。在Ein状态下,一个氯离子和两个钠离子可以从细胞质侧依次结合。在Eout状态下,一个钠离子被封闭在转运蛋白内,一个氯离子、一个钠离子和一个γ-氨基丁酸(GABA)分子可以从细胞外侧结合。当Ein位点为空时,向Eout状态的转变会打开外侧的结合位点,并封闭一个细胞外钠离子。这种构象变化是GAT1主要的电生反应,它在0 mV时限制正向运输(即GABA摄取)的速率。从Eout状态开始,一个GABA可以与一个钠离子一起转运到细胞质侧,从而形成Ein状态。此后,一个细胞外氯离子可以被转运,封闭的钠离子释放到细胞质中,使转运蛋白回到Ein状态。在没有细胞外氯离子的情况下可以发生GABA-GABA交换,但必须运输一个氯离子才能完成正向运输循环。在逆向运输循环中,一个细胞质氯离子首先与Ein状态结合,随后是两个钠离子。一个氯离子和一个钠离子一起被封闭,然后第二个钠离子和GABA被封闭并转运。这些反应对电压的微弱依赖性决定了外向电流-电压关系的斜率。能被准确模拟的实验结果包括:(a)所有电流-电压关系;(b)迄今为止描述的所有底物依赖性;(c)顺式-顺式和顺式-反式底物相互作用;(d)在没有运输电流时的电荷移动;(e)电荷移动动力学对底物浓度的依赖性;(f)在有底物存在时的预稳态电流瞬变;(g)底物诱导的电容变化;(h)GABA-GABA交换;以及(i)在名义上没有细胞外氯离子的情况下存在内向运输电流和GABA-GABA交换。