Suppr超能文献

使用二氧化碳-容积图比较通气新生儿死腔测量的不同方法。

Comparison of different methods for dead space measurements in ventilated newborns using CO2-volume plot.

作者信息

Wenzel U, Wauer R R, Schmalisch G

机构信息

Clinic of Neonatology, Charité-Hospital, Humboldt University, Berlin, Germany.

出版信息

Intensive Care Med. 1999 Jul;25(7):705-13. doi: 10.1007/s001340050933.

Abstract

OBJECTIVE

The aim of the study was to test the applicability of Ventrak 1550/Capnogard 1265 (V-C) for respiratory dead space (VD) measurement and to determine anatomic (VDana), physiologic (VDphys), and alveolar dead spaces (VDalv) in ventilated neonates.

DESIGN

Prospective study.

SETTING

Neonatal intensive care unit.

PATIENTS

33 investigations in 22 ventilated neonates; median gestational age 34.5 weeks (range 27-41), median birthweight 2658 g (range 790-3940).

METHOD

The single-breath CO2 test (SBT-CO2) and transcutaneous partial pressure of carbon dioxide (PCO2) were recorded simultaneously and VD was determined (1) automatically (V-C software), (2) by interactive analysis of the PCO2 volume plot, and (3) manually by Bohr/Enghoff equations using data obtained by V-C.

RESULTS

VD measurements were possible in all cases by method 3 but not possible by methods 1 and 2 in 22 of 33 investigations (67%), especially in preterm neonates, because of disturbed signals. V.Dana/kg (1.6 +/- 0.6 ml/kg, mean +/- SD), VDana/tidal volume (VT) (0.36 +/- 0.09) were lower compared to published data in spontaneously breathing infants, whereas VDphys/kg (2.3 +/- 0.9 ml/kg) and VDphys/VT (0.50 +/- 0.12) are comparable to data obtained from the literature. Five minutes after insertion of the sensor (dead space 2.6 ml) into the ventilatory circuit, the transcutaneous PCO2 rose above baseline for 3.2% (patients > 2500 g) and 5.7% (patients < 2500 g). The time necessary for one analysis was 50-60 min.

CONCLUSION

In ventilated newborns, dead space measurements were possible only in one-third by SBT-CO2, but in all cases by Bohr/Enghoff equations. Improved software could further reduce the time needed for one analysis.

摘要

目的

本研究旨在测试Ventrak 1550/Capnogard 1265(V-C)用于测量呼吸死腔(VD)的适用性,并确定机械通气新生儿的解剖死腔(VDana)、生理死腔(VDphys)和肺泡死腔(VDalv)。

设计

前瞻性研究。

地点

新生儿重症监护病房。

患者

对22例机械通气新生儿进行了33次检测;中位胎龄34.5周(范围27-41周),中位出生体重2658 g(范围790-3940 g)。

方法

同时记录单次呼吸二氧化碳试验(SBT-CO2)和经皮二氧化碳分压(PCO2),并通过以下方式确定VD:(1)自动测定(V-C软件),(2)通过对PCO2容量图进行交互式分析,(3)使用V-C获得的数据,通过Bohr/Enghoff方程手动测定。

结果

在所有检测中,方法3均能成功测定VD,但在33次检测中的22次(67%),尤其是早产儿,由于信号干扰,方法1和方法2无法测定VD。与已发表的自主呼吸婴儿数据相比,VDana/kg(1.6±0.6 ml/kg,平均值±标准差)和VDana/潮气量(VT)(0.36±0.09)较低,而VDphys/kg(2.3±0.9 ml/kg)和VDphys/VT(0.50±0.12)与文献数据相当。将传感器(死腔2.6 ml)插入通气回路5分钟后,经皮PCO2在体重>2500 g的患者中升高至基线以上3.2%,在体重<2500 g的患者中升高至基线以上5.7%。每次分析所需时间为50-60分钟。

结论

在机械通气的新生儿中,仅三分之一的检测可通过SBT-CO2测定死腔,但所有检测均可通过Bohr/Enghoff方程测定。改进后的软件可进一步缩短单次分析所需时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验