Suppr超能文献

Growth and phenotypic characterization of porcine coronary artery smooth muscle cells.

作者信息

Lavigne M C, Ramwell P W, Clarke R

机构信息

Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20007, USA.

出版信息

In Vitro Cell Dev Biol Anim. 1999 Mar;35(3):136-43. doi: 10.1007/s11626-999-0015-7.

Abstract

Vascular smooth muscle cell (VSMC) proliferation significantly contributes to atherosclerotic plaque formation and limits the success rate of percutaneous transluminal coronary angioplasty. We derived a population of porcine coronary artery SMCs to characterize VSMC proliferation and phenotype in preparation to study the molecular actions of VSMC mitogens and antiproliferative agents. Growth assays were designed to minimize the estrogen content in the culture medium, since this steroid hormone significantly influences VSMC growth and the expression of VSMC mitogens and their receptors. Culture conditions were identified such that this criterion was achieved while maintaining a significant VSMC growth rate. Cells cultured in serum-free medium, regardless of growth factor supplements, did not remain adherent to a plastic culture substrate, nor did they proliferate. Dextran-coated charcoal (DCC)-treated sera, including fetal bovine, calf, and porcine, supported VSMC adhesion, but not growth. Whole fetal bovine serum (FBS) produced the best proliferative response. A type-I collagen-coated culture surface significantly enhanced VSMC growth, but only in culture medium containing non-DCC-treated FBS. Flow cytometry analyses confirmed the mitogenic effects of this substrate. The VSMCs exhibited a morphological change on type-I collagen, but this was not accompanied by a change in VSMC phenotype. Our data indicate that culture of these porcine coronary artery SMCs in 2.5% FBS plus 10 ng platelet-derived growth factor-BB per ml in phenol red-free medium on type-I collagen may be the optimal conditions for studying the molecular aspects of VSMC mitogens and antiproliferative agents.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验