Suppr超能文献

氯霉素抗性线粒体DNA向嵌合小鼠的转移。

Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse.

作者信息

Levy S E, Waymire K G, Kim Y L, MacGregor G R, Wallace D C

机构信息

Center for Molecular Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

出版信息

Transgenic Res. 1999 Apr;8(2):137-45. doi: 10.1023/a:1008967412955.

Abstract

The mitochondrial DNA (mtDNA) chloramphenicol (CAP)-resistance (CAPR) mutation has been introduced into the tissues of adult mice via female embryonic stem (ES) cells. The endogenous CAP-sensitive (CAPS) mtDNAs were eliminated by treatment of the ES cells with the lipophilic dye Rhodamine-6-G (R-6-G). The ES cells were then fused to enucleated cell cytoplasts prepared from the CAPR mouse cell line 501-1. This procedure converted the ES cell mtDNA from 100% wild-type to 100% mutant. The CAPR ES cells were then injected into blastocysts and viable chimeric mice were isolated. Molecular testing for the CAPR mutant mtDNAs revealed that the percentage of mutant mtDNAs varied from zero to approximately 50% in the tissues analyzed. The highest percentage of mutant mtDNA was found in the kidney in three of the chimeric animals tested. These data suggest that, with improved efficiency, it may be possible to transmit exogenous mtDNA mutants through the mouse germ-line.

摘要

线粒体DNA(mtDNA)氯霉素(CAP)抗性(CAPR)突变已通过雌性胚胎干细胞(ES细胞)导入成年小鼠组织中。通过用亲脂性染料罗丹明-6-G(R-6-G)处理ES细胞,消除了内源性氯霉素敏感(CAPS)mtDNA。然后将ES细胞与从CAPR小鼠细胞系501-1制备的去核细胞质体融合。此过程将ES细胞的mtDNA从100%野生型转化为100%突变型。然后将CAPR ES细胞注射到囊胚中,并分离出存活的嵌合小鼠。对CAPR突变mtDNA的分子检测显示,在所分析的组织中,突变mtDNA的百分比从零到约50%不等。在三只受试嵌合动物的肾脏中发现了最高百分比的突变mtDNA。这些数据表明,随着效率的提高,有可能通过小鼠种系传递外源性mtDNA突变体。

相似文献

1
Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse.
Transgenic Res. 1999 Apr;8(2):137-45. doi: 10.1023/a:1008967412955.
2
Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice.
Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14461-6. doi: 10.1073/pnas.250491597.
4
Effect of mitochondrial dosage on transfer of chloramphenicol resistance.
Somatic Cell Genet. 1983 Jul;9(4):469-76. doi: 10.1007/BF01543047.
7
Generation of Xenomitochondrial Embryonic Stem Cells for the Production of Live Xenomitochondrial Mice.
Methods Mol Biol. 2016;1351:163-73. doi: 10.1007/978-1-4939-3040-1_12.
9
Sequence analysis of mouse mitochondrial chloramphenicol-resistant mutants.
Somat Cell Mol Genet. 1989 May;15(3):237-44. doi: 10.1007/BF01534874.
10
Application of ES cells for generation of respiration-deficient mice carrying mtDNA with a large-scale deletion.
Biochem Biophys Res Commun. 2005 Jul 29;333(2):590-5. doi: 10.1016/j.bbrc.2005.05.155.

引用本文的文献

1
Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells.
Sci Rep. 2020 Aug 31;10(1):14328. doi: 10.1038/s41598-020-71199-0.
2
The second genome: Effects of the mitochondrial genome on cancer progression.
Adv Cancer Res. 2019;142:63-105. doi: 10.1016/bs.acr.2019.01.001. Epub 2019 Feb 27.
3
Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems.
Annu Rev Pathol. 2018 Jan 24;13:163-191. doi: 10.1146/annurev-pathol-020117-043644. Epub 2017 Nov 3.
6
Animal models of human mitochondrial DNA mutations.
Biochim Biophys Acta. 2012 May;1820(5):601-7. doi: 10.1016/j.bbagen.2011.08.005. Epub 2011 Aug 11.
7
Xenomitochondrial mice: investigation into mitochondrial compensatory mechanisms.
Mitochondrion. 2011 Jan;11(1):33-9. doi: 10.1016/j.mito.2010.07.003. Epub 2010 Jul 16.
8
Mouse models of oxidative phosphorylation defects: powerful tools to study the pathobiology of mitochondrial diseases.
Biochim Biophys Acta. 2009 Jan;1793(1):171-80. doi: 10.1016/j.bbamcr.2008.06.003. Epub 2008 Jun 13.
9
A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations.
Science. 2008 Feb 15;319(5865):958-62. doi: 10.1126/science.1147786.
10
Development and initial characterization of xenomitochondrial mice.
J Bioenerg Biomembr. 2004 Aug;36(4):421-7. doi: 10.1023/B:JOBB.0000041778.84464.16.

本文引用的文献

2
Mitochondria transfer into mouse ova by microinjection.
Transgenic Res. 1997 Nov;6(6):379-83. doi: 10.1023/a:1018431316831.
3
Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice.
Nat Genet. 1997 May;16(1):93-5. doi: 10.1038/ng0597-93.
9
Rhodamine 6G, inhibitor of both H+-ejections from mitochondria energized with ATP and with respiratory substrates.
Biochim Biophys Acta. 1980 Dec 3;593(2):463-7. doi: 10.1016/0005-2728(80)90081-x.
10
Localization of mitochondria in living cells with rhodamine 123.
Proc Natl Acad Sci U S A. 1980 Feb;77(2):990-4. doi: 10.1073/pnas.77.2.990.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验