Papadakis A K, Roubelakis-Angelakis K A
Department of Biology, University of Crete, P.O. Box 2280, 71 409 Heraklio, Greece.
Plant Physiol. 1999 Sep;121(1):197-206. doi: 10.1104/pp.121.1.197.
Our previous results have shown that oxidative stress may reduce the regeneration potential of protoplasts, but only protoplasts that are able to supply extracellularly H(2)O(2) can actually divide (C.I. Siminis, A.K. Kanellis, K.A. Roubelakis-Angelakis [1993] Physiol Plant 87: 263-270; C.I. Siminis, A.K. Kanellis, K.A. Roubelakis-Angelakis [1994] Plant Physiol 1105: 1375-1383; A. de Marco, K.A. Roubelakis-Angelakis [1996a] Plant Physiol 110: 137-145; A. de Marco, K.A. Roubelakis-Angelakis [1996b] J Plant Physiol 149: 109-114). In the present study we have attempted to break down the oxidative burst response into the individual active oxygen species (AOS) superoxide (O(2)(-)) and H(2)O(2), and into individual AOS-generating systems during the isolation of regenerating tobacco (Nicotiana tabacum L.) and non-regenerating grape (Vitis vinifera L. ) mesophyll protoplasts. Wounding leaf tissue or applying purified cellulase did not elicit AOS production. However, the application of non-purified cellulase during maceration induced a burst of O(2)(-) and H(2)O(2) accumulation in tobacco leaf, while in grape significantly lower levels of both AOS accumulated. AOS were also generated when protoplasts isolated with purified cellulase were treated with non-purified cellulase. The response was rapid: after 5 min, AOS began to accumulate in the culture medium, with significant quantitative differences between the two species. In tobacco protoplasts and plasma membrane vesicles, two different AOS synthase activities were revealed, one that showed specificity to NADPH and sensitivity to diphenyleneiodonium (DPI) and was responsible for O(2)(*-) production, and a second NAD(P)H activity that was sensitive to KCN and NaN(3), contributing to the production of both AOS. The first activity probably corresponds to a mammalian-like NADPH oxidase and the second to a NAD(P)H oxidase-peroxidase. In grape, only one AOS-generating activity was detected, which corresponded to a NAD(P)H oxidase-peroxidase responsible for the generation of both AOS.
我们之前的研究结果表明,氧化应激可能会降低原生质体的再生潜力,但只有能够向细胞外供应过氧化氢(H₂O₂)的原生质体才能实际分裂(C.I. 西米尼斯、A.K. 卡内利斯、K.A. 鲁贝拉基斯 - 安杰拉基斯 [1993]《植物生理学》87: 263 - 270;C.I. 西米尼斯、A.K. 卡内利斯、K.A. 鲁贝拉基斯 - 安杰拉基斯 [1994]《植物生理学》1105: 1375 - 1383;A. 德马尔科、K.A. 鲁贝拉基斯 - 安杰拉基斯 [1996a]《植物生理学》110: 137 - 145;A. 德马尔科、K.A. 鲁贝拉基斯 - 安杰拉基斯 [1996b]《植物生理学杂志》149: 109 - 114)。在本研究中,我们试图在再生烟草(烟草)和非再生葡萄(葡萄)叶肉原生质体分离过程中,将氧化爆发反应分解为单个活性氧物种(AOS)超氧阴离子(O₂⁻)和过氧化氢(H₂O₂),以及单个AOS产生系统。损伤叶片组织或应用纯化的纤维素酶不会引发AOS的产生。然而,在浸渍过程中应用未纯化的纤维素酶会诱导烟草叶片中O₂⁻和H₂O₂积累的爆发,而在葡萄中两种AOS积累的水平明显较低。当用纯化的纤维素酶分离的原生质体用未纯化的纤维素酶处理时,也会产生AOS。反应迅速:5分钟后,AOS开始在培养基中积累,两种植物之间存在显著的定量差异。在烟草原生质体和质膜囊泡中,揭示了两种不同的AOS合酶活性,一种对NADPH具有特异性且对二苯基碘鎓(DPI)敏感,负责产生O₂⁻,另一种NAD(P)H活性对KCN和NaN₃敏感,有助于两种AOS的产生。第一种活性可能对应于类似哺乳动物的NADPH氧化酶,第二种对应于NAD(P)H氧化酶 - 过氧化物酶。在葡萄中,仅检测到一种AOS产生活性,它对应于一种负责产生两种AOS的NAD(P)H氧化酶 - 过氧化物酶。