Suppr超能文献

Estimating gluconeogenesis with [U-13C]glucose: molecular condensation requires a molecular approach.

作者信息

Kelleher J K

机构信息

Department of Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia 20037, USA.

出版信息

Am J Physiol. 1999 Sep;277(3):E395-400. doi: 10.1152/ajpendo.1999.277.3.E395.

Abstract

Recently three equations for estimating gluconeogenesis in vivo have been proposed, two by J. A. Tayek and J. Katz [Am. J. Physiol. 270 (Endocrinol. Metab. 33): E709-E717, 1996, and Am. J. Physiol. 272 (Endocrinol. Metab. 35): E476-E484, 1997] and one by B. R. Landau, J. Wahren, K. Ekberg, S. F. Previs, D. Yang, and H. Brunengraber [Am. J. Physiol. 274 (Endocrinol. Metab. 37): E954-E961, 1998]. Both groups estimate gluconeogenesis from cycling of [U-13C]glucose to lactate and back to glucose, detected by mass spectrometry. Landau's approach is based on analysis of labeled molecules, whereas Tayek and Katz's is based on labeling of carbon atoms by use of the concept of "molar enrichment," which weights each mass isotopomer by the number of labeled carbons. We derived an equation very similar to Landau's using binomial probability. Our analysis demonstrates that the molecular-based approach is correct. Additionally, equations appropriate for 14C studies are not appropriate for 13C studies, because the method used to detect 14C, decay of atoms, differs from 13C mass isotopomers detected as labeled molecules. We conclude that the molar enrichment carbon-based approach is not useful in the derivation of equations for the polymerization of molecules detected by mass spectrometry of molecules, and we confirm the findings of Landau et al.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验