Haymond M W, Sunehag A L
Baylor College of Medicine, Children's Nutrition Research Center, United States Department of Agriculture, Agricultural Research Service, Houston, Texas 77030, USA.
Am J Physiol Endocrinol Metab. 2000 Jan;278(1):E140-5. doi: 10.1152/ajpendo.2000.278.1.E140.
To improve upon the [U-(13)C]glucose method to estimate "gluconeogenesis" as described by J. Katz and J. A. Tayek (Am. J. Physiol. Endocrinol. Metab. 272: E476-E484, 1997, and 275: E537-E542, 1998), we describe the reciprocal pool model by using only the isotopomer data of plasma glucose during infusion of [U-(13)C]glucose. The glucose pool serves as both precursor and product for the calculation of the fraction of molecules generated by gluconeogenesis and to correct for exchange and loss of labeled carbon at the level of the tricarboxylic acid cycle. We have applied this model to both our own data and those of other investigators using [U-(13)C]glucose and have demonstrated excellent agreement between the Katz and Tayek model and our reciprocal pool model. When we compare the results of the reciprocal pool model with those of Hellerstein ([2-(13)C]glycerol) and Landau ((2)H(2)O-glucose-C-5), the results are similar in short- and long-term fasted adult humans. Finally, when we apply the reciprocal pool model to our data from premature infants, it is clear that we account for the inflow of unlabeled glycerol and presumably amino acids. This is not surprising, because the vast majority of gluconeogenesis is the result of recycling of glucose and pyruvate carbon.
为改进J. Katz和J. A. Tayek(《美国生理学杂志:内分泌与代谢》272: E476 - E484, 1997,以及275: E537 - E542, 1998)所描述的用于估算“糖异生”的[U-(13)C]葡萄糖方法,我们仅利用输注[U-(13)C]葡萄糖期间血浆葡萄糖的同位素异构体数据描述了互逆池模型。葡萄糖池既作为前体又作为产物,用于计算由糖异生产生的分子分数,并校正三羧酸循环水平上标记碳的交换和损失。我们已将此模型应用于我们自己的数据以及其他使用[U-(13)C]葡萄糖的研究者的数据,并证明了Katz和Tayek模型与我们的互逆池模型之间具有极好的一致性。当我们将互逆池模型的结果与Hellerstein([2-(13)C]甘油)和Landau((2)H(2)O - 葡萄糖 - C - 5)的结果进行比较时,在短期和长期禁食的成年人体内结果相似。最后,当我们将互逆池模型应用于我们从早产儿获得的数据时,很明显我们考虑了未标记甘油以及可能的氨基酸的流入。这并不奇怪,因为绝大多数糖异生是葡萄糖和丙酮酸碳循环利用的结果。