Levy N, Horn D, Ruppin E
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel.
Neural Comput. 1999 Oct 1;11(7):1717-37. doi: 10.1162/089976699300016205.
Recent imaging studies suggest that object knowledge is stored in the brain as a distributed network of many cortical areas. Motivated by these observations, we study a multimodular associative memory network, whose functional goal is to store patterns with different coding levels--patterns that vary in the number of modules in which they are encoded. We show that in order to accomplish this task, synaptic inputs should be segregated into intramodular projections and intermodular projections, with the latter undergoing additional nonlinear dendritic processing. This segregation makes sense anatomically if the intermodular projections represent distal synaptic connections on apical dendrites. It is then straightforward to show that memories encoded in more modules are more resilient to focal afferent damage. Further hierarchical segregation of intermodular connections on the dendritic tree improves this resilience, allowing memory retrieval from input to just one of the modules in which it is encoded.
最近的成像研究表明,客体知识作为一个由许多皮质区域组成的分布式网络存储在大脑中。受这些观察结果的启发,我们研究了一个多模块联想记忆网络,其功能目标是存储具有不同编码水平的模式——即在编码模块数量上有所不同的模式。我们表明,为了完成这项任务,突触输入应分为模块内投射和模块间投射,后者要经历额外的非线性树突处理。如果模块间投射代表顶端树突上的远端突触连接,那么这种分离在解剖学上是有意义的。然后很容易证明,在更多模块中编码的记忆对局部传入损伤更具弹性。树突上模块间连接的进一步分层分离提高了这种弹性,使得能够从输入到其编码的仅一个模块中检索记忆。