Suppr超能文献

稀疏编码收缩:通过最大似然估计对非高斯数据进行去噪。

Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estimation.

作者信息

Hyvarinen A

机构信息

Helsinki University of Technology, Laboratory of Computer and Information Science, FIN-02015 HUT, Finland.

出版信息

Neural Comput. 1999 Oct 1;11(7):1739-68. doi: 10.1162/089976699300016214.

Abstract

Sparse coding is a method for finding a representation of data in which each of the components of the representation is only rarely significantly active. Such a representation is closely related to redundancy reduction and independent component analysis, and has some neurophysiological plausibility. In this article, we show how sparse coding can be used for denoising. Using maximum likelihood estimation of nongaussian variables corrupted by gaussian noise, we show how to apply a soft-thresholding (shrinkage) operator on the components of sparse coding so as to reduce noise. Our method is closely related to the method of wavelet shrinkage, but it has the important benefit over wavelet methods that the representation is determined solely by the statistical properties of the data. The wavelet representation, on the other hand, relies heavily on certain mathematical properties (like self-similarity) that may be only weakly related to the properties of natural data.

摘要

稀疏编码是一种寻找数据表示的方法,在这种表示中,其每个分量只有很少情况下会显著激活。这样的表示与冗余减少和独立成分分析密切相关,并且具有一定的神经生理学合理性。在本文中,我们展示了稀疏编码如何用于去噪。通过对受高斯噪声干扰的非高斯变量进行最大似然估计,我们展示了如何在稀疏编码的分量上应用软阈值(收缩)算子以减少噪声。我们的方法与小波收缩方法密切相关,但它相对于小波方法具有重要优势,即该表示仅由数据的统计特性决定。另一方面,小波表示严重依赖某些数学特性(如自相似性),而这些特性可能与自然数据的特性仅有微弱关联。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验