Suppr超能文献

肺炎链球菌对常用非β-内酰胺类药物耐药的分子机制

Molecular mechanisms of resistance to commonly used non-betalactam drugs in Streptococcus pneumoniae.

作者信息

Widdowson C A, Klugman K P

机构信息

MRC/SAIMR/WITS Pneumococcal Diseases Research Unit, South African Institute for Medical Research, Johannesburg.

出版信息

Semin Respir Infect. 1999 Sep;14(3):255-68.

Abstract

This article reviews the molecular mechanisms of resistance to fluoroquinolones, erythromycin, chloramphenicol, tetracycline, and trimethoprim-sulfamethoxazole in Streptococcus pneumoniae. Resistance to fluoroquinolones primarily involves mutations in the DNA gyrase gene, gyrA, and in the topoisomerase IV genes, parC and parE, although in vitro studies have indicated that some strains may use an efflux mechanism for resistance to certain fluoroquinolones. Ciprofloxacin resistance results from initial and necessary mutations in ParC leading to low-level resistance and subsequent mutations in GyrA leading to high-level resistance. Sparfloxacin resistance results from initial mutations in GyrA, with ParC mutations occurring subsequently. A single amino acid substitution in ParE has also been associated with low-level resistance in S pneumoniae. Two mechanisms have been described for resistance to erythromycin. Coresistance to macrolides, lincosamides, and streptogramin B type antibiotics is a result of modification of the ribosome through methylation of an adenine residue in domain V of the 23S rRNA. This methylation is encoded by the methylase gene, ermAM. Resistance only to 14-and 15-membered macrolides is a result of efflux of the antibiotic from the cell, encoded by the gene, mefE, in S pneumoniae, and appears to be rapidly emerging as the predominant mechanism of resistance to erythromycin in many countries. The production of chloramphenicol acetyltransferase, an enzyme capable of catalyzing the conversion of chloramphenicol to its nonfunctional 1-acetoxy, 3-acetoxy, and 1,3-diacetoxy derivatives, leads to chloramphenicol resistance in S pneumoniae. Chloramphenicol acetyltransferase is encoded by a cat gene identical to the cat gene from the Staphylococcus aureus plasmid, pC194. Tetracycline resistance occurs through ribosomal protection encoded by the genes tet(M) and tet(O). It is possible that the Tet(M) and Tet(O) proteins cause tetracycline to be released from the ribosome, although the precise mechanism remains unclear. Resistance to trimethoprim is mediated through a single amino acid substitution in the chromosomal dihydrofolate reductase gene of S pneumoniae, which is thought to disrupt the bond with trimethoprim without affecting the action of the dihydrofolate reductase. Sulphonamide resistance appears to result from repetitions of one or two amino acids in the chromosomal dihydropteroate synthase. Although resistance exists to nearly all antimicrobial agents used in the treatment of S pneumoniae infections, ongoing research into new or alternative therapies is encouraging.

摘要

本文综述了肺炎链球菌对氟喹诺酮类、红霉素、氯霉素、四环素以及甲氧苄啶 - 磺胺甲恶唑的耐药分子机制。对氟喹诺酮类的耐药主要涉及DNA旋转酶基因gyrA以及拓扑异构酶IV基因parC和parE的突变,不过体外研究表明一些菌株可能利用外排机制对某些氟喹诺酮类产生耐药。环丙沙星耐药源于ParC的初始且必要的突变导致低水平耐药,随后GyrA发生突变导致高水平耐药。司帕沙星耐药源于GyrA的初始突变,随后ParC发生突变。ParE中的单个氨基酸取代也与肺炎链球菌的低水平耐药有关。已描述了两种对红霉素的耐药机制。对大环内酯类、林可酰胺类和链阳菌素B型抗生素的共同耐药是由于23S rRNA结构域V中的腺嘌呤残基甲基化导致核糖体修饰。这种甲基化由甲基化酶基因ermAM编码。仅对14元和15元大环内酯类的耐药是由于抗生素从细胞中外排,由肺炎链球菌中的基因mefE编码,并且在许多国家似乎正迅速成为对红霉素耐药的主要机制。氯霉素乙酰转移酶的产生导致肺炎链球菌对氯霉素耐药,该酶能够催化氯霉素转化为其无功能的1 - 乙酰氧基、3 - 乙酰氧基和1,3 - 二乙酰氧基衍生物。氯霉素乙酰转移酶由与金黄色葡萄球菌质粒pC194中的cat基因相同的cat基因编码。四环素耐药通过tet(M)和tet(O)基因编码的核糖体保护发生。虽然确切机制尚不清楚,但Tet(M)和Tet(O)蛋白可能导致四环素从核糖体释放。对甲氧苄啶的耐药是通过肺炎链球菌染色体二氢叶酸还原酶基因中的单个氨基酸取代介导的,这被认为会破坏与甲氧苄啶的结合而不影响二氢叶酸还原酶的作用。磺胺耐药似乎是由于染色体二氢蝶酸合酶中一个或两个氨基酸的重复。尽管对几乎所有用于治疗肺炎链球菌感染的抗菌药物都存在耐药性,但对新的或替代疗法的持续研究令人鼓舞。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验