Begley T P, Xi J, Kinsland C, Taylor S, McLafferty F
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Curr Opin Chem Biol. 1999 Oct;3(5):623-9. doi: 10.1016/s1367-5931(99)00018-6.
The thiamin and biotin biosynthetic pathways utilize elaborate strategies for the transfer of sulfur from cysteine to cofactor precursors. For thiamin, the sulfur atom of cysteine is transferred to a 66-amino-acid peptide (ThiS) to form a carboxy-terminal thiocarboxylate group. This sulfur transfer requires three enzymes and proceeds via a ThiS-acyladenylate intermediate. The biotin synthase Fe-S cluster functions as the immediate sulfur donor for biotin formation. C-S bond formation proceeds via radical intermediates that are generated by hydrogen atom transfer from dethiobiotin to the adenosyl radical. This radical is formed by the reductive cleavage of S-adenosylmethionine by the reduced Fe-S cluster of biotin synthase.
硫胺素和生物素的生物合成途径采用了复杂的策略,将硫从半胱氨酸转移至辅因子前体。对于硫胺素而言,半胱氨酸的硫原子被转移至一条66个氨基酸的肽链(硫胺素合成酶硫载体蛋白,ThiS)上,形成一个羧基末端硫代羧酸盐基团。这种硫转移需要三种酶,并通过硫胺素合成酶硫载体蛋白-酰基腺苷酸中间体进行。生物素合酶的铁硫簇作为生物素形成的直接硫供体。碳-硫键的形成通过自由基中间体进行,这些中间体由硫代生物素上的氢原子转移至腺苷自由基而产生。该自由基由生物素合酶的还原型铁硫簇对S-腺苷甲硫氨酸进行还原裂解形成。