Frazier Clara L, Deb Debashrito, Weeks Amy M
Department of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA 53706.
Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706.
bioRxiv. 2024 May 13:2024.05.13.593989. doi: 10.1101/2024.05.13.593989.
In biological systems, ATP provides an energetic driving force for peptide bond formation, but protein chemists lack tools that emulate this strategy. Inspired by the eukaryotic ubiquitination cascade, we developed an ATP-driven platform for C-terminal activation and peptide ligation based on MccB, a bacterial ancestor of ubiquitin-activating (E1) enzymes that natively catalyzes C-terminal phosphoramidate bond formation. We show that MccB can act on non-native substrates to generate an -AMPylated electrophile that can react with exogenous nucleophiles to form diverse C-terminal functional groups including thioesters, a versatile class of biological intermediates that have been exploited for protein semisynthesis. To direct this activity towards specific proteins of interest, we developed the Thioesterification C-terminal Handle (TeCH)-tag, a sequence that enables high-yield, ATP-driven protein bioconjugation via a thioester intermediate. By mining the natural diversity of the MccB family, we developed two additional MccB/TeCH-tag pairs that are mutually orthogonal to each other and to the system, facilitating the synthesis of more complex bioconjugates. Our method mimics the chemical logic of peptide bond synthesis that is widespread in biology for high-yield manipulation of protein structure with molecular precision.
在生物系统中,三磷酸腺苷(ATP)为肽键形成提供能量驱动力,但蛋白质化学家缺乏模拟这种策略的工具。受真核生物泛素化级联反应的启发,我们基于泛素激活(E1)酶的细菌祖先MccB开发了一种用于C端激活和肽连接的ATP驱动平台,MccB天然催化C端氨基磷酸酯键的形成。我们表明,MccB可以作用于非天然底物,生成一种可与外源亲核试剂反应形成多种C端官能团(包括硫酯)的腺苷单磷酸化亲电试剂,硫酯是一类通用的生物中间体,已被用于蛋白质半合成。为了将这种活性导向特定的目标蛋白质,我们开发了硫酯化C端手柄(TeCH)标签,该序列能够通过硫酯中间体实现高产率、ATP驱动的蛋白质生物共轭。通过挖掘MccB家族的天然多样性,我们开发了另外两对相互正交且与该系统正交的MccB/TeCH标签对,便于合成更复杂的生物共轭物。我们的方法模仿了在生物学中广泛存在的肽键合成的化学逻辑,用于以分子精度高产率地操纵蛋白质结构。