Suppr超能文献

A method for measuring upper respiratory tract vapor uptake and its applicability to quantitative inhalation risk assessment.

作者信息

Morris J B

机构信息

Toxicology Program, Department of Pharmaceutical Services, Box U-92, University of Connecticut, Storrs, CT 06269-2092, USA.

出版信息

Inhal Toxicol. 1999 Oct;11(10):943-65. doi: 10.1080/089583799196727.

Abstract

A thorough understanding of the toxicity of any substance requires knowledge of the relationships between exposure concentration and dose delivered to the critical target site. This is particularly true for inhalation exposures because inspired particles and vapors do not deposit uniformly in the respiratory tract. The current report describes in detail a methodology for measuring upper respiratory tract (URT) uptake of vapors in the rat. A urethane-anesthetized animal model is utilized in which two endotracheal tubes are inserted: one leading toward the lung to facilitate respiration, and the other toward the nose to allow air sampling through the nasal passages. The animal is placed in a nose-only exposure chamber and test vapor is drawn through the nose for periods up to 1 h. Uptake efficiency is calculated from the difference in vapor concentration between the inspired (chamber) air and air exiting the URT. Uptake data are provided for acetaldehyde and nicotine vapors, and a suggested experimental design that includes multiple air flow regimes and inspired concentrations is described. The data obtained by this methodology are not necessarily reflective of uptake efficiencies in normally breathing animals due to the nonphysiologic airflow regimes and the invasiveness of the procedure. The data so obtained are best utilized to support and validate state-of-the-art mathematical simulation models of regional vapor uptake. These models increase scientific rigor and reduce uncertainty in quantitative risk assessments for inhaled materials.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验