Timsit Y
Institut de Biologie Physico-Chimique, CNRS - UPR 9080, 13, rue Pierre et Marie Curie, Paris, 75005, France.
J Mol Biol. 1999 Nov 5;293(4):835-53. doi: 10.1006/jmbi.1999.3199.
The accuracy of DNA replication results from both the intrinsic DNA polymerase fidelity and the DNA sequence. Although the recent structural studies on polymerases have brought new insights on polymerase fidelity, the role of DNA sequence and structure is less well understood. Here, the analysis of the crystal structures of hotspots for polymerase slippage including (CA)n and (A)n tracts in different intermolecular contexts reveals that, in the B-form, these sequences share common structural alterations which may explain the high rate of replication errors. In particular, a two-faced "Janus-like" structure with shifted base-pairs in the major groove but an apparent normal geometry in the minor groove constitutes a molecular decoy specifically suitable to mislead the polymerases. A model of the rat polymerase beta bound to this structure suggests that an altered conformation of the nascent template-primer duplex can interfere with correct nucleotide incorporation by affecting the geometry of the active site and breaking the rules of base-pairing, while at the same time escaping enzymatic mechanisms of error discrimination which scan for the correct geometry of the minor groove.In contrast, by showing that the A-form greatly attenuates the sequence-dependent structural alterations in hotspots, this study suggests that the A-conformation of the nascent template-primer duplex at the vicinity of the polymerase active site will contribute to fidelity. The A-form may play the role of a structural buffer which preserves the correct geometry of the active site for all sequences. The detailed comparison of the conformation of the nascent template-primer duplex in the available crystal structures of DNA polymerase-DNA complexes shows that polymerase beta, the least accurate enzyme, is unique in binding to a B-DNA duplex even close to its active site. This model leads to several predictions which are discussed in the light of published experimental data.
DNA复制的准确性源于DNA聚合酶的内在保真度和DNA序列。尽管最近对聚合酶的结构研究为聚合酶保真度带来了新的见解,但DNA序列和结构的作用仍不太清楚。在这里,对聚合酶滑动热点的晶体结构分析,包括不同分子间环境中的(CA)n和(A)n序列,发现在B型结构中,这些序列具有共同的结构改变,这可能解释了高复制错误率。特别是,一种双面的“两面神样”结构,在大沟中碱基对发生位移,但在小沟中几何形状明显正常,构成了一种特别适合误导聚合酶的分子诱饵。与这种结构结合的大鼠聚合酶β模型表明,新生模板-引物双链体的构象改变可通过影响活性位点的几何形状和打破碱基配对规则来干扰正确的核苷酸掺入,同时逃避扫描小沟正确几何形状的错误识别酶促机制。相反,通过表明A型结构大大减弱了热点中序列依赖性的结构改变,这项研究表明,聚合酶活性位点附近新生模板-引物双链体的A型构象将有助于保真度。A型结构可能起到结构缓冲的作用,为所有序列保留活性位点的正确几何形状。对DNA聚合酶-DNA复合物现有晶体结构中新生模板-引物双链体构象的详细比较表明,最不准确的酶聚合酶β在结合B-DNA双链体时是独特的,即使靠近其活性位点也是如此。该模型得出了几个预测,并根据已发表的实验数据进行了讨论。