Suppr超能文献

枯草芽孢杆菌芽孢衣形态发生蛋白CotE的功能区域。

Functional regions of the Bacillus subtilis spore coat morphogenetic protein CotE.

作者信息

Bauer T, Little S, Stöver A G, Driks A

机构信息

Department of Microbiology, Loyola University Medical Center, Maywood, Illinois 60153, USA.

出版信息

J Bacteriol. 1999 Nov;181(22):7043-51. doi: 10.1128/JB.181.22.7043-7051.1999.

Abstract

The Bacillus subtilis spore is encased in a resilient, multilayered proteinaceous shell, called the coat, that protects it from the environment. A 181-amino-acid coat protein called CotE assembles into the coat early in spore formation and plays a morphogenetic role in the assembly of the coat's outer layer. We have used a series of mutant alleles of cotE to identify regions involved in outer coat protein assembly. We found that the insertion of a 10-amino-acid epitope, between amino acids 178 and 179 of CotE, reduced or prevented the assembly of several spore coat proteins, including, most likely, CotG and CotB. The removal of 9 or 23 of the C-terminal-most amino acids resulted in an unusually thin outer coat from which a larger set of spore proteins was missing. In contrast, the removal of 37 amino acids from the C terminus, as well as other alterations between amino acids 4 and 160, resulted in the absence of a detectable outer coat but did not prevent localization of CotE to the forespore. These results indicate that changes in the C-terminal 23 amino acids of CotE and in the remainder of the protein have different consequences for outer coat protein assembly.

摘要

枯草芽孢杆菌孢子被包裹在一个有弹性的、多层的蛋白质外壳中,称为芽孢衣,它保护孢子免受外界环境影响。一种名为CotE的181个氨基酸的芽孢衣蛋白在孢子形成早期组装到芽孢衣中,并在芽孢衣外层的组装中发挥形态发生作用。我们使用了一系列cotE突变等位基因来确定参与外层芽孢衣蛋白组装的区域。我们发现,在CotE的第178和179个氨基酸之间插入一个10个氨基酸的表位,会减少或阻止几种孢子芽孢衣蛋白的组装,其中很可能包括CotG和CotB。去除最末端的9个或23个氨基酸会导致外层芽孢衣异常薄,并且会缺失更多种类的孢子蛋白。相比之下,从C末端去除37个氨基酸,以及在第4和160个氨基酸之间的其他改变,会导致检测不到外层芽孢衣,但不会阻止CotE定位到前芽孢。这些结果表明,CotE C末端的23个氨基酸的变化以及蛋白质其余部分的变化对外层芽孢衣蛋白组装有不同的影响。

相似文献

1
Functional regions of the Bacillus subtilis spore coat morphogenetic protein CotE.
J Bacteriol. 1999 Nov;181(22):7043-51. doi: 10.1128/JB.181.22.7043-7051.1999.
2
Functional analysis of the Bacillus subtilis morphogenetic spore coat protein CotE.
Mol Microbiol. 2001 Nov;42(4):1107-20. doi: 10.1046/j.1365-2958.2001.02708.x.
3
Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation.
J Bacteriol. 2001 Mar;183(5):1645-54. doi: 10.1128/JB.183.5.1645-1654.2001.
5
The timing of cotE expression affects Bacillus subtilis spore coat morphology but not lysozyme resistance.
J Bacteriol. 2007 Mar;189(6):2401-10. doi: 10.1128/JB.01353-06. Epub 2006 Dec 15.
6
Localization of proteins to different layers and regions of Bacillus subtilis spore coats.
J Bacteriol. 2010 Jan;192(2):518-24. doi: 10.1128/JB.01103-09. Epub 2009 Nov 20.
7
Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH.
PLoS One. 2013 Sep 27;8(9):e74949. doi: 10.1371/journal.pone.0074949. eCollection 2013.
8
Morphogenetic proteins SpoVID and SafA form a complex during assembly of the Bacillus subtilis spore coat.
J Bacteriol. 2000 Apr;182(7):1828-33. doi: 10.1128/JB.182.7.1828-1833.2000.
10
Bacillus subtilis spore coat assembly requires cotH gene expression.
J Bacteriol. 1996 Aug;178(15):4375-80. doi: 10.1128/jb.178.15.4375-4380.1996.

引用本文的文献

1
Disruption of Spore Coat Integrity in Enhances Macrophage Immune Activation.
Curr Issues Mol Biol. 2025 May 20;47(5):378. doi: 10.3390/cimb47050378.
3
Interactions of Basement Spore Coat Layer Proteins.
Microorganisms. 2021 Jan 30;9(2):285. doi: 10.3390/microorganisms9020285.
4
Diversity and evolutionary dynamics of spore-coat proteins in spore-forming species of Bacillales.
Microb Genom. 2020 Nov;6(11). doi: 10.1099/mgen.0.000451. Epub 2020 Oct 14.
6
Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site.
Acta Crystallogr F Struct Biol Commun. 2016 Apr;72(Pt 4):328-35. doi: 10.1107/S2053230X1600426X. Epub 2016 Mar 24.
7
The Direct Interaction between Two Morphogenetic Proteins Is Essential for Spore Coat Formation in Bacillus subtilis.
PLoS One. 2015 Oct 20;10(10):e0141040. doi: 10.1371/journal.pone.0141040. eCollection 2015.
8
Protection of Bacillus pumilus spores by catalases.
Appl Environ Microbiol. 2012 Sep;78(18):6413-22. doi: 10.1128/AEM.01211-12. Epub 2012 Jun 29.
10
Do mycobacteria produce endospores?
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):878-81. doi: 10.1073/pnas.0911299107. Epub 2009 Dec 22.

本文引用的文献

1
The composition and structure of bacterial spores.
J Cell Biol. 1963 Mar;16(3):579-92. doi: 10.1083/jcb.16.3.579.
3
Bacillus subtilis spore coat.
Microbiol Mol Biol Rev. 1999 Mar;63(1):1-20. doi: 10.1128/MMBR.63.1.1-20.1999.
4
Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein.
J Bacteriol. 1999 Mar;181(5):1664-72. doi: 10.1128/JB.181.5.1664-1672.1999.
5
A four-dimensional view of assembly of a morphogenetic protein during sporulation in Bacillus subtilis.
J Bacteriol. 1999 Feb;181(3):781-90. doi: 10.1128/JB.181.3.781-790.1999.
6
Cloning of a novel gene yrbB, encoding a protein located in the spore integument of Bacillus subtilis.
FEMS Microbiol Lett. 1998 Sep 15;166(2):361-7. doi: 10.1111/j.1574-6968.1998.tb13913.x.
8
The complete genome sequence of the gram-positive bacterium Bacillus subtilis.
Nature. 1997 Nov 20;390(6657):249-56. doi: 10.1038/36786.
9
Molecular genetics of sporulation in Bacillus subtilis.
Annu Rev Genet. 1996;30:297-41. doi: 10.1146/annurev.genet.30.1.297.
10
Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy.
Mol Microbiol. 1995 Nov;18(3):459-70. doi: 10.1111/j.1365-2958.1995.mmi_18030459.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验