Samset E, Hirschberg H
Interventional Center, Rikshospitalet, University of Oslo, Norway.
Comput Aided Surg. 1999;4(4):200-7. doi: 10.1002/(SICI)1097-0150(1999)4:4<200::AID-IGS4>3.0.CO;2-Z.
We describe the development and implementation of an image-guided surgical system combining the best features of conventional frameless stereotactic systems and the recently developed superconductive vertically configured intraoperative magnetic resonance scanner. The incorporation of intraoperatively updated magnetic resonance imaging (MRI) data sets into the neuronavigation computer overcomes one of the main disadvantages of these systems, i.e., intraoperative brain shift.
The integrated system consists of a 0.5-T MRI scanner (Signa SP General Electric Medical Systems, Milwaukee, WI), a neuronavigation computer with associated software (OTS Radionics, Burlington, MA), and an emulation program linking the two. The scanner has a 60-cm-wide vertical gap where both imaging and surgery are conducted, in-bore infrared linear cameras and monitors for interactive surgical neuronavigation, and flexible surface coils specially designed for surgery.
Phantom studies showed navigational accuracy to be better than that obtained using conventional preoperative images and surface markers for patient registration. Our initial 17 cases using this integrated system comprised 16 craniotomies and one biopsy, and demonstrated decreased operative duration, greater frequency of interactive image guidance utilization, and better assessment of the progress of surgery compared to the cases previously done in the intraoperative MRI.
This initial study of the addition of frameless stereotactic systems to the basic intraoperative MRI concept has demonstrated its clinical usefulness. The use of the intraoperative MRI greatly reduces the basic weakness of neuronavigation inaccuracy due to target shift. The surgical procedure performed in the imaging volume of the MRI scanner eliminates the problems of patient or scanner transport during the procedure. Immobilization of the patient throughout the procedure eliminated the need for reregistration of the patient, by taking advantage of the fixed camera system in the bore of the MRI system.
我们描述了一种图像引导手术系统的开发与实施,该系统结合了传统无框架立体定向系统的最佳特性以及最近开发的超导垂直配置术中磁共振扫描仪。将术中更新的磁共振成像(MRI)数据集整合到神经导航计算机中,克服了这些系统的一个主要缺点,即术中脑移位。
该集成系统由一台0.5-T MRI扫描仪(Signa SP通用电气医疗系统公司,威斯康星州密尔沃基)、一台带有相关软件的神经导航计算机(OTS Radionics公司,马萨诸塞州伯灵顿)以及连接两者的仿真程序组成。该扫描仪有一个60厘米宽的垂直间隙,成像和手术均在此进行,有用于交互式手术神经导航的孔内红外线性摄像头和监视器,以及专门为手术设计的柔性表面线圈。
模型研究表明,与使用传统术前图像和表面标记进行患者配准相比,导航精度更高。我们使用该集成系统的最初17例病例包括16例开颅手术和1例活检,与之前在术中MRI下进行的病例相比,手术时间缩短,交互式图像引导的使用频率更高,手术进展评估更好。
对在基本术中MRI概念中添加无框架立体定向系统的初步研究已证明其临床实用性。术中MRI的使用大大降低了由于靶点移位导致神经导航不准确的基本弱点。在MRI扫描仪的成像区域内进行手术消除了手术过程中患者或扫描仪转运的问题。通过利用MRI系统孔内的固定摄像头系统,在整个手术过程中对患者进行固定消除了患者重新配准的需要。