McEwen R K, Dove S K, Cooke F T, Painter G F, Holmes A B, Shisheva A, Ohya Y, Parker P J, Michell R H
School of Biochemistry, Centre for Clinical Research in Immunology and Signalling, University of Birmingham, Birmingham B15 2TT, United Kingdom.
J Biol Chem. 1999 Nov 26;274(48):33905-12. doi: 10.1074/jbc.274.48.33905.
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2)) is widespread in eukaryotic cells. In Saccharomyces cerevisiae, PtdIns(3,5)P(2) synthesis is catalyzed by the PtdIns3P 5-kinase Fab1p, and loss of this activity results in vacuolar morphological defects, indicating that PtdIns(3,5)P(2) is essential for vacuole homeostasis. We have therefore suggested that all Fab1p homologues may be PtdIns3P 5-kinases involved in membrane trafficking. It is unclear which phosphatidylinositol phosphate kinases (PIPkins) are responsible for PtdIns(3,5)P(2) synthesis in higher eukaryotes. To clarify how PtdIns(3,5)P(2) is synthesized in mammalian and other cells, we determined whether yeast and mammalian Fab1p homologues or mammalian Type I PIPkins (PtdIns4P 5-kinases) make PtdIns(3,5)P(2) in vivo. The recently cloned murine (p235) and Schizosaccharomyces pombe FAB1 homologues both restored basal PtdIns(3,5)P(2) synthesis in Deltafab1 cells and made PtdIns(3,5)P(2) in vitro. Only p235 corrected the growth and vacuolar defects of fab1 S. cerevisiae. A mammalian Type I PIPkin supported no PtdIns(3,5)P(2) synthesis. Thus, FAB1 and its homologues constitute a distinct class of Type III PIPkins dedicated to PtdIns(3,5)P(2) synthesis. The differential abilities of p235 and of SpFab1p to complement the phenotypic defects of Deltafab1 cells suggests that interaction(s) with other protein factors may be important for spatial and/or temporal regulation of PtdIns(3,5)P(2) synthesis. These results also suggest that p235 may regulate a step in membrane trafficking in mammalian cells that is analogous to its function in yeast.
磷脂酰肌醇3,5 - 二磷酸(PtdIns(3,5)P(2))广泛存在于真核细胞中。在酿酒酵母中,PtdIns(3,5)P(2)的合成由磷脂酰肌醇3 - 磷酸5 - 激酶Fab1p催化,该活性的丧失会导致液泡形态缺陷,这表明PtdIns(3,5)P(2)对于液泡稳态至关重要。因此,我们认为所有Fab1p同源物可能都是参与膜运输的磷脂酰肌醇3 - 磷酸5 - 激酶。目前尚不清楚在高等真核生物中哪些磷脂酰肌醇磷酸激酶(PIPkins)负责PtdIns(3,5)P(2)的合成。为了阐明PtdIns(3,5)P(2)在哺乳动物和其他细胞中是如何合成的,我们确定了酵母和哺乳动物的Fab1p同源物或哺乳动物I型PIPkins(磷脂酰肌醇4 - 磷酸5 - 激酶)在体内是否能合成PtdIns(3,5)P(2)。最近克隆的小鼠(p235)和粟酒裂殖酵母FAB1同源物都能恢复Δfab1细胞中的基础PtdIns(3,5)P(2)合成,并在体外合成PtdIns(3,5)P(2)。只有p235纠正了酿酒酵母fab1的生长和液泡缺陷。一种哺乳动物I型PIPkin不能支持PtdIns(3,5)P(2)的合成。因此,FAB1及其同源物构成了一类专门负责PtdIns(3,5)P(2)合成的独特III型PIPkins。p235和粟酒裂殖酵母Fab1p在互补Δfab1细胞表型缺陷方面的不同能力表明,与其他蛋白质因子的相互作用可能对PtdIns(3,5)P(2)合成的空间和/或时间调节很重要。这些结果还表明,p235可能在哺乳动物细胞的膜运输中调节一个类似于其在酵母中功能的步骤。