Suppr超能文献

使用电影谐波相位(HARP)磁共振成像进行心脏运动跟踪。

Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging.

作者信息

Osman N F, Kerwin W S, McVeigh E R, Prince J L

机构信息

Department of Electrical and Computer Engineering, Center for Imaging Science, The Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Magn Reson Med. 1999 Dec;42(6):1048-60. doi: 10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m.

Abstract

This article introduces a new image processing technique for rapid analysis of tagged cardiac magnetic resonance image sequences. The method uses isolated spectral peaks in SPAMM-tagged magnetic resonance images, which contain information about cardiac motion. The inverse Fourier transform of a spectral peak is a complex image whose calculated angle is called a harmonic phase (HARP) image. It is shown how two HARP image sequences can be used to automatically and accurately track material points through time. A rapid, semiautomated procedure to calculate circumferential and radial Lagrangian strain from tracked points is described. This new computational approach permits rapid analysis and visualization of myocardial strain within 5-10 min after the scan is complete. Its performance is demonstrated on MR image sequences reflecting both normal and abnormal cardiac motion. Results from the new method are shown to compare very well with a previously validated tracking algorithm. Magn Reson Med 42:1048-1060, 1999.

摘要

本文介绍了一种用于快速分析标记心脏磁共振图像序列的新图像处理技术。该方法利用SPAMM标记磁共振图像中的孤立光谱峰值,这些峰值包含有关心脏运动的信息。光谱峰值的逆傅里叶变换是一个复图像,其计算角度称为谐波相位(HARP)图像。展示了如何使用两个HARP图像序列随时间自动且准确地跟踪物质点。描述了一种从跟踪点计算圆周和径向拉格朗日应变的快速半自动程序。这种新的计算方法允许在扫描完成后5 - 10分钟内快速分析和可视化心肌应变。其性能在反映正常和异常心脏运动的磁共振图像序列上得到了证明。新方法的结果与先前验证的跟踪算法相比非常好。《磁共振医学》42:1048 - 1060,1999年。

相似文献

1
Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging.
Magn Reson Med. 1999 Dec;42(6):1048-60. doi: 10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m.
2
Imaging heart motion using harmonic phase MRI.
IEEE Trans Med Imaging. 2000 Mar;19(3):186-202. doi: 10.1109/42.845177.
3
Accurate two-dimensional cardiac strain calculation using adaptive windowed Fourier transform and Gabor wavelet transform.
Int J Comput Assist Radiol Surg. 2013 Jan;8(1):135-44. doi: 10.1007/s11548-012-0689-2. Epub 2012 Apr 24.
4
Motion estimation of tagged cardiac magnetic resonance images using variational techniques.
Comput Med Imaging Graph. 2010 Sep;34(6):514-22. doi: 10.1016/j.compmedimag.2010.03.002. Epub 2010 Apr 21.
5
Harmonic phase interference for the detection of tag line crossings and beyond in homogeneous strain analysis of cardiac tagged MRI data.
Australas Phys Eng Sci Med. 2010 Dec;33(4):357-66. doi: 10.1007/s13246-010-0039-z. Epub 2010 Nov 26.
7
Regenerating MR tagged images using harmonic phase (HARP) methods.
IEEE Trans Biomed Eng. 2004 Aug;51(8):1428-33. doi: 10.1109/TBME.2004.827932.
8
Quantification of myocardial deformation by deformable registration-based analysis of cine MRI: validation with tagged CMR.
Eur Radiol. 2019 Jul;29(7):3658-3668. doi: 10.1007/s00330-019-06019-9. Epub 2019 Feb 15.
10
Cine viability magnetic resonance imaging of the heart without increased scan time.
Magn Reson Imaging. 2016 Feb;34(2):183-90. doi: 10.1016/j.mri.2015.10.030. Epub 2015 Oct 31.

引用本文的文献

2
The pulsing brain: state of the art and an interdisciplinary perspective.
Interface Focus. 2025 Apr 4;15(1):20240058. doi: 10.1098/rsfs.2024.0058.
3
Dynamic visualization of brain pulsations using amplified MRI: methodology and applications.
Interface Focus. 2025 Apr 4;15(1):20240049. doi: 10.1098/rsfs.2024.0049.
4
TagGen: Diffusion-based generative model for cardiac MR tagging super resolution.
Magn Reson Med. 2025 Jul;94(1):362-372. doi: 10.1002/mrm.30422. Epub 2025 Jan 17.
5
A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond.
Med Image Anal. 2025 Feb;100:103385. doi: 10.1016/j.media.2024.103385. Epub 2024 Nov 10.
6
In-silico heart model phantom to validate cardiac strain imaging.
bioRxiv. 2024 Aug 7:2024.08.05.606672. doi: 10.1101/2024.08.05.606672.
8
Deep Learning Synthetic Strain: Quantitative Assessment of Regional Myocardial Wall Motion at MRI.
Radiol Cardiothorac Imaging. 2023 May 11;5(3):e220202. doi: 10.1148/ryct.220202. eCollection 2023 Jun.
9
Improved computation of Lagrangian tissue displacement and strain for cine DENSE MRI using a regularized spatiotemporal least squares method.
Front Cardiovasc Med. 2023 Mar 16;10:1095159. doi: 10.3389/fcvm.2023.1095159. eCollection 2023.

本文引用的文献

1
Optimization of tag thickness for measuring position with magnetic resonance imaging.
IEEE Trans Med Imaging. 1994;13(1):152-60. doi: 10.1109/42.276154.
2
Tag and contour detection in tagged MR images of the left ventricle.
IEEE Trans Med Imaging. 1994;13(1):74-88. doi: 10.1109/42.276146.
4
Tracking and finite element analysis of stripe deformation in magnetic resonance tagging.
IEEE Trans Med Imaging. 1995;14(3):413-21. doi: 10.1109/42.414605.
5
Cardiac material markers from tagged MR images.
Med Image Anal. 1998 Dec;2(4):339-53. doi: 10.1016/s1361-8415(98)80015-7.
6
Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM.
Med Image Anal. 1996 Mar;1(1):53-71. doi: 10.1016/s1361-8415(01)80005-0.
8
Cardiac MR imaging: report of a working group sponsored by the National Heart, Lung, and Blood Institute.
Radiology. 1998 Sep;208(3):573-6. doi: 10.1148/radiology.208.3.9722831.
9
Regional myocardial function.
Cardiol Clin. 1998 May;16(2):189-206. doi: 10.1016/s0733-8651(05)70008-4.
10
Imaging asynchronous mechanical activation of the paced heart with tagged MRI.
Magn Reson Med. 1998 Apr;39(4):507-13. doi: 10.1002/mrm.1910390402.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验