Suppr超能文献

需氧生长的金黄色葡萄球菌中的能量守恒

Energy conservation in aerobically grown Staphylococcus aureus.

作者信息

Tynecka Z, Szcześniak Z, Malm A, Los R

机构信息

Department of Pharmaceutical Microbiology, Medical Academy, Lublin, Poland.

出版信息

Res Microbiol. 1999 Oct;150(8):555-66. doi: 10.1016/s0923-2508(99)00102-3.

Abstract

The present studies provide new data on the involvement of menaquinol oxidases in substrate oxidation and energy conservation in aerobically grown, resting cells of Staphylococcus aureus 17810R, starved of endogenous energy reserves and supplemented with glutamate or L-lactate. These cells were energetically competent, since they oxidized both substrates, generated an electrochemical proton gradient (deltamuH+) and synthesized ATP via oxidative phosphorylation. Studies with KCN showed that: (i) L-lactate oxidation occurred via two terminal menaquinol oxidases - the ba3-type sensitive to low KCN and the bo-type insensitive to cyanide, (ii) glutamate oxidation proceeded via the bo-type oxidase, and (iii) ATP synthesis with glutamate or L-lactate was coupled only to the bo-type oxidase. Also in glucose-grown cells oxidizing L-lactate, ATP synthesis was coupled to the highly repressed bo-type oxidase. It is suggested that in the respiratory chain of strain 17810R two energy coupling sites may be present: in the complex of NADH-menaquinone oxidoreductase and in the complex of the bo-type menaquinol oxidase. The rate of ATP synthesis was similar with both substrates, but the rate of their oxidation differed significantly: the P/O ratios were 1.5 and 0.03 with glutamate and L-lactate, respectively. CCCP accelerated glutamate oxidation by 50% but was without effect on L-lactate oxidation. In cell lysates, the rates of NADH and L-lactate oxidation were equal. It is concluded that in whole cells of S. aureus 17810R oxidation of NADH derived from glutamate breakdown is tightly coupled to phosphorylation, while L-lactate oxidation seems to be rather loosely coupled.

摘要

本研究提供了新的数据,涉及甲萘醌氧化酶在金黄色葡萄球菌17810R需氧生长的静息细胞中参与底物氧化和能量守恒的情况,这些细胞耗尽了内源性能量储备,并补充了谷氨酸或L-乳酸。这些细胞具有能量代谢能力,因为它们能氧化这两种底物,产生电化学质子梯度(ΔμH+),并通过氧化磷酸化合成ATP。用KCN进行的研究表明:(i)L-乳酸氧化通过两种末端甲萘醌氧化酶进行——对低浓度KCN敏感的ba3型和对氰化物不敏感的bo型,(ii)谷氨酸氧化通过bo型氧化酶进行,(iii)用谷氨酸或L-乳酸合成ATP仅与bo型氧化酶偶联。同样,在氧化L-乳酸的葡萄糖生长细胞中,ATP合成与高度受抑制的bo型氧化酶偶联。有人提出,在17810R菌株的呼吸链中可能存在两个能量偶联位点:一个在NADH-甲萘醌氧化还原酶复合物中,另一个在bo型甲萘醌氧化酶复合物中。两种底物的ATP合成速率相似,但它们的氧化速率差异显著:谷氨酸和L-乳酸的P/O比分别为1.5和0.03。CCCP使谷氨酸氧化加速50%,但对L-乳酸氧化无影响。在细胞裂解物中,NADH和L-乳酸的氧化速率相等。得出的结论是,在金黄色葡萄球菌17810R的完整细胞中,谷氨酸分解产生的NADH氧化与磷酸化紧密偶联,而L-乳酸氧化似乎偶联较松散。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验