Hammer Neal D, Schurig-Briccio Lici A, Gerdes Svetlana Y, Gennis Robert B, Skaar Eric P
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
Department of Biochemistry, University of Illinois, Urbana, Illinois, USA.
mBio. 2016 Jul 12;7(4):e00823-16. doi: 10.1128/mBio.00823-16.
Staphylococcus aureus is the leading cause of skin and soft tissue infections, bacteremia, osteomyelitis, and endocarditis in the developed world. The ability of S. aureus to cause substantial disease in distinct host environments is supported by a flexible metabolism that allows this pathogen to overcome challenges unique to each host organ. One feature of staphylococcal metabolic flexibility is a branched aerobic respiratory chain composed of multiple terminal oxidases. Whereas previous biochemical and spectroscopic studies reported the presence of three different respiratory oxygen reductases (o type, bd type, and aa3 type), the genome contains genes encoding only two respiratory oxygen reductases, cydAB and qoxABCD Previous investigation showed that cydAB and qoxABCD are required to colonize specific host organs, the murine heart and liver, respectively. This work seeks to clarify the relationship between the genetic studies showing the unique roles of the cydAB and qoxABCD in virulence and the respiratory reductases reported in the literature. We establish that QoxABCD is an aa3-type menaquinol oxidase but that this enzyme is promiscuous in that it can assemble as a bo3-type menaquinol oxidase. However, the bo3 form of QoxABCD restricts the carbon sources that can support the growth of S. aureus In addition, QoxABCD function is supported by a previously uncharacterized protein, which we have named CtaM, that is conserved in aerobically respiring Firmicutes In total, these studies establish the heme A biosynthesis pathway in S. aureus, determine that QoxABCD is a type aa3 menaquinol oxidase, and reveal CtaM as a new protein required for type aa3 menaquinol oxidase function in multiple bacterial genera.
Staphylococcus aureus relies upon the function of two terminal oxidases, CydAB and QoxABCD, to aerobically respire and colonize distinct host tissues. Previous biochemical studies support the conclusion that a third terminal oxidase is also present. We establish the components of the S. aureus electron transport chain by determining the heme cofactors that interact with QoxABCD. This insight explains previous observations by revealing that QoxABCD can utilize different heme cofactors and confirms that the electron transport chain of S. aureus is comprised of two terminal menaquinol oxidases. In addition, a newly identified protein, CtaM, is found to be required for the function of QoxABCD. These results provide a more complete assessment of the molecular mechanisms that support staphylococcal respiration.
在发达国家,金黄色葡萄球菌是皮肤和软组织感染、菌血症、骨髓炎及心内膜炎的主要病因。金黄色葡萄球菌在不同宿主环境中引发严重疾病的能力得益于其灵活的新陈代谢,这种新陈代谢使该病原体能够克服每个宿主器官特有的挑战。葡萄球菌代谢灵活性的一个特征是由多种末端氧化酶组成的分支有氧呼吸链。尽管先前的生化和光谱研究报告称存在三种不同的呼吸氧还原酶(o型、bd型和aa3型),但其基因组仅包含编码两种呼吸氧还原酶cydAB和qoxABCD的基因。先前的研究表明,cydAB和qoxABCD分别是在特定宿主器官(小鼠心脏和肝脏)中定殖所必需的。这项工作旨在阐明显示cydAB和qoxABCD在毒力方面独特作用的遗传学研究与文献中报道的呼吸还原酶之间的关系。我们确定QoxABCD是一种aa3型甲萘醌氧化酶,但该酶具有混杂性,因为它可以组装成bo3型甲萘醌氧化酶。然而,QoxABCD的bo3形式限制了能够支持金黄色葡萄球菌生长的碳源。此外,QoxABCD的功能由一种先前未鉴定的蛋白质支持,我们将其命名为CtaM,这种蛋白质在需氧呼吸的厚壁菌门中保守。总的来说,这些研究确定了金黄色葡萄球菌中的血红素A生物合成途径,确定QoxABCD是一种aa3型甲萘醌氧化酶,并揭示CtaM是多种细菌属中aa3型甲萘醌氧化酶功能所需的一种新蛋白质。
金黄色葡萄球菌依靠两种末端氧化酶CydAB和QoxABCD进行有氧呼吸并定殖于不同的宿主组织。先前的生化研究支持还存在第三种末端氧化酶的结论。我们通过确定与QoxABCD相互作用的血红素辅因子来确定金黄色葡萄球菌电子传递链的组成成分。这一见解通过揭示QoxABCD可以利用不同的血红素辅因子解释了先前的观察结果,并证实金黄色葡萄球菌的电子传递链由两种末端甲萘醌氧化酶组成。此外,发现一种新鉴定的蛋白质CtaM是QoxABCD功能所必需的。这些结果为支持葡萄球菌呼吸作用的分子机制提供了更完整的评估。