Tan P Z, Baldwin R M, Van Dyck C H, Al-Tikriti M, Roth B, Khan N, Charney D S, Innis R B
Yale University School of Medicine, Yale-VA Pet Center, West Haven, Connecticut 06511, USA.
Nucl Med Biol. 1999 Aug;26(6):601-8. doi: 10.1016/s0969-8051(99)00022-0.
This study was performed to identify and characterize the radiometabolites of the serotonin 5-HT2A receptor ligand [18F]altanserin in supporting quantification of the target receptors by positron emission tomography. In analogy to its analog ketanserin, we postulated 4-(4-fluorobenzoyl)piperidine (FBP) and altanserinol for the previously observed two polar radiometabolites, corresponding to dealkylation at the piperidine nitrogen and reduction at the ketone, respectively. To test this hypothesis and characterize the in vivo and in vitro behavior of the radiometabolites, we synthesized nonradioactive authentic compounds altanserinol, 1-(4-fluorophenyl)-1-(piperidin-4-yl)methanol (FBPOH), and isolated nonradioactive FBP metabolite from monkey plasma. [18F]Altanserinol was obtained by NaBH4 reduction of [18F]altanserin, followed by acid hydrolysis. Identification of radiometabolites was carried out by high performance liquid chromatography and thin layer chromatography comparison of the radioactive plasma after injection of tracers with five authentic compounds. Human studies revealed that at least four radiometabolites, one identified as [18F]altanserinol, resulted from reduction of the ketone functionality. The N-dealkylation product [18F]FBP was not detectable; however, a radiometabolite of FBP was present in plasma after administration of [18F]altanserin. Monkey studies showed nonradioactive FBP was converted rapidly to a less polar metabolite. In rat, altanserin and altanserinol were converted to each other in vivo, and all the radiometabolites likely penetrated the blood-brain barrier and entered the brain. Displacement binding of altanserin to cloned serotonin 5-HT2A, 5-HT2C, 5-HT6, and 5-HT7 receptors showed Ki values of 0.3, 6.0, 1,756, and 15 nM; the binding of FBP and altanserinol to these four 5-HT subtypes was negligible. We conclude from these studies that the radiometabolites of [18F]altanserin from N-dealkylation and ketone reduction should not interfere with specific receptor quantification in an equilibrium paradigm.
本研究旨在鉴定和表征血清素5-HT2A受体配体[18F]阿坦色林的放射性代谢物,以支持通过正电子发射断层扫描对靶受体进行定量分析。与其类似物酮色林相似,我们推测先前观察到的两种极性放射性代谢物分别为4-(4-氟苯甲酰基)哌啶(FBP)和阿坦色林醇,它们分别对应于哌啶氮上的脱烷基化和酮基的还原。为了验证这一假设并表征放射性代谢物的体内和体外行为,我们合成了非放射性的阿坦色林醇、1-(4-氟苯基)-1-(哌啶-4-基)甲醇(FBPOH)等真实化合物,并从猴血浆中分离出非放射性的FBP代谢物。[18F]阿坦色林醇通过用NaBH4还原[18F]阿坦色林,然后进行酸水解获得。通过高效液相色谱法以及将注射示踪剂后的放射性血浆与五种真实化合物进行薄层色谱比较来鉴定放射性代谢物。人体研究表明,至少有四种放射性代谢物,其中一种被鉴定为[18F]阿坦色林醇,是由酮官能团的还原产生的。N-脱烷基化产物[18F]FBP无法检测到;然而,在给予[18F]阿坦色林后,血浆中存在FBP的一种放射性代谢物。猴研究表明,非放射性FBP迅速转化为极性较小的代谢物。在大鼠中,阿坦色林和阿坦色林醇在体内相互转化,并且所有放射性代谢物可能穿透血脑屏障并进入大脑。阿坦色林与克隆的血清素5-HT2A、5-HT2C、5-HT6和5-HT7受体的置换结合显示Ki值分别为0.3、6.0、1756和15 nM;FBP和阿坦色林醇与这四种5-HT亚型的结合可忽略不计。我们从这些研究中得出结论,[18F]阿坦色林经N-脱烷基化和酮还原产生的放射性代谢物在平衡模式下不应干扰特异性受体的定量分析。