Price J C, Lopresti B J, Mason N S, Holt D P, Huang Y, Mathis C A
Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
Synapse. 2001 Jul;41(1):1-10. doi: 10.1002/syn.1054.
Positron emission tomography (PET) has been used to study serotonin 2A (5-HT(2A)) receptor binding in human brain using the 5-HT(2A) antagonist, [(18)F]altanserin. Previous analyses of bolus injection [(18)F]altanserin data provided 5-HT(2A) specific binding measures that were highly correlated with the in vitro distribution of 5-HT(2A) receptors and reflected decreased binding after ketanserin (5-HT(2A) antagonist) administration. These observations were made in the presence of a nonspecific tissue component that was consistent with blood-brain barrier (BBB) passage of radiolabeled metabolites (radiometabolites). In this work, we evaluated the in vivo kinetics of [(18)F]altanserin and two major radiometabolites of [(18)F]altanserin, focusing on the kinetics of free and nonspecifically-bound radioactivity. PET studies were performed in baboons after the bolus injection of [(18)F]altanserin or one of its major radiometabolites, either [(18)F]altanserinol or [(18)F]4-(4-fluorobenzoyl)piperidine, at baseline and after pharmacologic receptor blockade (blocking data). The cerebellar and blocking data were analyzed using either single (parent radiotracer) or dual (parent radiotracer and radiometabolites) input function methods. After bolus injection of either [(18)F]altanserin metabolite, radioactivity crossed the BBB and localized nonspecifically. The radio- metabolites were found to contribute to nonspecific "background" radioactivity that was similar in receptor-poor and receptor-rich regions. After bolus injection in baboons, two of the major radiometabolites of [(18)F]altanserin crossed the BBB and contributed to a fairly uniform background of nonspecific radioactivity. This uniformity suggests that conventional analyses are appropriate for human bolus injection [(18)F]altanserin PET data, although these methods may overestimate [(18)F]altanserin nonspecific binding.
正电子发射断层扫描(PET)已被用于使用5-羟色胺2A(5-HT(2A))拮抗剂[(18)F]阿坦色林研究人脑内5-HT(2A)受体结合情况。先前对团注[(18)F]阿坦色林数据的分析提供了与5-HT(2A)受体体外分布高度相关的5-HT(2A)特异性结合测量值,并反映了酮色林(5-HT(2A)拮抗剂)给药后结合减少。这些观察结果是在存在与放射性标记代谢物(放射性代谢物)血脑屏障(BBB)通过一致的非特异性组织成分的情况下做出的。在这项工作中,我们评估了[(18)F]阿坦色林及其两种主要放射性代谢物的体内动力学,重点是游离和非特异性结合放射性的动力学。在团注[(18)F]阿坦色林或其主要放射性代谢物之一,即[(18)F]阿坦色林醇或[(18)F]4-(4-氟苯甲酰基)哌啶后,在基线和药理学受体阻断后(阻断数据)对狒狒进行PET研究。使用单输入函数(母体放射性示踪剂)或双输入函数方法(母体放射性示踪剂和放射性代谢物)分析小脑和阻断数据。在团注[(18)F]阿坦色林的任何一种代谢物后,放射性穿过血脑屏障并非特异性定位。发现放射性代谢物促成了在受体贫乏和受体丰富区域相似的非特异性“背景”放射性。在狒狒中进行团注后,[(18)F]阿坦色林的两种主要放射性代谢物穿过血脑屏障,并促成了相当均匀的非特异性放射性背景。这种均匀性表明,传统分析适用于人类团注[(18)F]阿坦色林PET数据,尽管这些方法可能高估了[(18)F]阿坦色林的非特异性结合。