Schneider M F, Marsh D, Jahn W, Kloesgen B, Heimburg T
Membrane Thermodynamics Group, Max-Planck-Institut für biophysikalische Chemie, D-37070 Göttingen, Germany.
Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14312-7. doi: 10.1073/pnas.96.25.14312.
Phospholipids when dispersed in excess water generally form vesicular membrane structures. Cryo-transmission and freeze-fracture electron microscopy are combined here with calorimetry and viscometry to demonstrate the reversible conversion of phosphatidylglycerol aqueous vesicle suspensions to a three-dimensional structure that consists of extended bilayer networks. Thermodynamic analysis indicates that the structural transitions arise from two effects: (i) the enhanced membrane elasticity accompanying the lipid state fluctuations on chain melting and (ii) solvent-associated interactions (including electrostatics) that favor a change in membrane curvature. The material properties of the hydrogels and their reversible formation offer the possibility of future applications, for example in drug delivery, the design of structural switches, or for understanding vesicle fusion or fission processes.
磷脂分散于过量水中时通常会形成囊泡膜结构。本文将低温透射电子显微镜和冷冻断裂电子显微镜与量热法和粘度测定法相结合,以证明磷脂酰甘油水囊泡悬浮液可可逆地转化为一种由扩展双层网络组成的三维结构。热力学分析表明,结构转变源于两种效应:(i) 链熔化时脂质状态波动所伴随的膜弹性增强;(ii) 有利于膜曲率变化的溶剂相关相互作用(包括静电作用)。水凝胶的材料特性及其可逆形成提供了未来应用的可能性,例如在药物递送、结构开关设计或理解囊泡融合或裂变过程方面。