Faust M E, Balota D A, Spieler D H, Ferraro F R
Department of Psychology, University of South Alabama, Mobile 36688-0002, USA.
Psychol Bull. 1999 Nov;125(6):777-99. doi: 10.1037/0033-2909.125.6.777.
Research on group differences in response latency often has as its goal the detection of Group x Treatment interactions. However, accumulating evidence suggests that response latencies for different groups are often linearly related, leading to an increased likelihood of finding spurious overadditive interactions in which the slower group produces a larger treatment effect. The authors propose a rate-amount model that predicts linear relationships between individuals and that includes global processing parameters based on large-scale group differences in information processing. These global processing parameters may be used to linearly transform response latencies from different individuals to a common information-processing scale so that small-scale group differences in information processing may be isolated. The authors recommend linear regression and z-score transformations that may be used to augment traditional analyses of raw response latencies.
对反应潜伏期的组间差异进行研究,其目标通常是检测组别×处理的交互作用。然而,越来越多的证据表明,不同组别的反应潜伏期往往呈线性相关,这就增加了发现虚假超加性交互作用的可能性,即反应较慢的组产生更大的处理效应。作者提出了一种速率-量模型,该模型预测个体之间的线性关系,并基于信息处理方面的大规模组间差异纳入全局处理参数。这些全局处理参数可用于将不同个体的反应潜伏期线性转换到一个共同的信息处理尺度,以便能够分离出信息处理方面的小规模组间差异。作者推荐使用线性回归和z分数转换,以增强对原始反应潜伏期的传统分析。