Suppr超能文献

一种复杂的连接酶核酶在体外从I类核酶结构域进化而来。

A complex ligase ribozyme evolved in vitro from a group I ribozyme domain.

作者信息

Jaeger L, Wright M C, Joyce G F

机构信息

Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, 15 rue Descartes, 67084 Strasbourg, France.

出版信息

Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14712-7. doi: 10.1073/pnas.96.26.14712.

Abstract

Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 10(16) different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3',5'-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3' hydroxyl and the other a 5' triphosphate. Ligation occurs in the context of a Watson-Crick duplex, with a catalytic rate of 0.26 min(-1) under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.

摘要

与大多数蛋白质一样,复杂的RNA分子通常是由不同的结构域和功能域组成的模块化结构。蛋白质的组成结构域可以通过不同的组合方式结合,形成具有不同功能的分子。这些观察结果提示,复杂的RNA分子也可能由预先存在的结构域和功能域组装而成。为了验证这一假设,我们使用体外进化方法,从一个包含10¹⁶个不同RNA分子的文库中筛选出一类前所未有的复杂连接酶核酶,该文库包含一个源自自我剪接I组核酶中一个大结构域的恒定区域。连接在这个恒定区域上的是三个高变区,总共85个核苷酸,它们在进化后的催化剂中形成了催化基序。连接酶核酶催化相邻的与模板结合的寡核苷酸之间形成3',5'-磷酸二酯键,其中一个寡核苷酸带有3'羟基,另一个带有5'三磷酸基团。连接反应发生在沃森-克里克双链的环境中,在最佳条件下催化速率为0.26 min⁻¹。恒定区域对催化活性至关重要,并且似乎保留了I组核酶的三级结构。这项研究表明,复杂的RNA分子与其蛋白质对应物一样,可以共享共同的结构域,同时表现出不同的催化功能。

相似文献

1
A complex ligase ribozyme evolved in vitro from a group I ribozyme domain.
Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14712-7. doi: 10.1073/pnas.96.26.14712.
2
Isolation of novel ribozymes that ligate AMP-activated RNA substrates.
Chem Biol. 1997 Aug;4(8):607-17. doi: 10.1016/s1074-5521(97)90246-5.
3
The effect of cytidine on the structure and function of an RNA ligase ribozyme.
RNA. 2001 Mar;7(3):395-404. doi: 10.1017/s135583820100228x.
4
5
Structurally complex and highly active RNA ligases derived from random RNA sequences.
Science. 1995 Jul 21;269(5222):364-70. doi: 10.1126/science.7618102.
6
RNA ligase ribozymes with a small catalytic core.
Sci Rep. 2023 May 26;13(1):8584. doi: 10.1038/s41598-023-35584-9.
8
Effects of complementary loop composition in truncated R3C ligase ribozymes on kiss switch activation.
Biosystems. 2019 Mar;177:9-15. doi: 10.1016/j.biosystems.2019.01.004. Epub 2019 Jan 11.
9
RNA-catalyzed RNA ligation on an external RNA template.
Chem Biol. 2002 Mar;9(3):297-307. doi: 10.1016/s1074-5521(02)00110-2.
10
The structural basis of ribozyme-catalyzed RNA assembly.
Science. 2007 Mar 16;315(5818):1549-53. doi: 10.1126/science.1136231.

引用本文的文献

1
Origin of ribonucleotide recognition motifs through ligand mimicry at early earth.
RNA Biol. 2024 Jan;21(1):107-121. doi: 10.1080/15476286.2024.2423149. Epub 2024 Nov 11.
2
Origin & influence of autocatalytic reaction networks at the advent of the RNA world.
RNA Biol. 2024 Jan;21(1):78-92. doi: 10.1080/15476286.2024.2405757. Epub 2024 Oct 2.
3
High-Fidelity RNA Copying via 2',3'-Cyclic Phosphate Ligation.
J Am Chem Soc. 2024 Apr 3;146(13):8887-8894. doi: 10.1021/jacs.3c10813. Epub 2024 Mar 19.
4
RNA origami: design, simulation and application.
RNA Biol. 2023 Jan;20(1):510-524. doi: 10.1080/15476286.2023.2237719.
5
A ribozyme that uses lanthanides as cofactor.
Nucleic Acids Res. 2023 Aug 11;51(14):7163-7173. doi: 10.1093/nar/gkad513.
8
Evolution towards increasing complexity through functional diversification in a protocell model of the RNA world.
Proc Biol Sci. 2021 Nov 24;288(1963):20212098. doi: 10.1098/rspb.2021.2098. Epub 2021 Nov 17.
9
Witnessing the structural evolution of an RNA enzyme.
Elife. 2021 Sep 9;10:e71557. doi: 10.7554/eLife.71557.
10
Water/Oil Emulsions with Controlled Droplet Sizes for Selection Experiments.
ACS Omega. 2021 Aug 16;6(33):21773-21783. doi: 10.1021/acsomega.1c03445. eCollection 2021 Aug 24.

本文引用的文献

1
Chance and necessity in the selection of nucleic acid catalysts.
Acc Chem Res. 1996 Feb;29(2):103-10. doi: 10.1021/ar9501378.
3
Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation.
J Am Chem Soc. 1996 Apr 10;118(14):3332-9. doi: 10.1021/ja953712b.
4
Kinetic intermediates trapped by native interactions in RNA folding.
Science. 1998 Mar 20;279(5358):1943-6. doi: 10.1126/science.279.5358.1943.
5
RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting.
Science. 1998 Mar 20;279(5358):1940-3. doi: 10.1126/science.279.5358.1940.
7
Creating novel enzymes by applied molecular evolution.
Chem Biol. 1997 Dec;4(12):889-98. doi: 10.1016/s1074-5521(97)90297-0.
9
Isolation of novel ribozymes that ligate AMP-activated RNA substrates.
Chem Biol. 1997 Aug;4(8):607-17. doi: 10.1016/s1074-5521(97)90246-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验